因为M是线段AE的中点,所以MO是△ACE的中位线,所以MO∥EC. 又MO?CEF,所以MO∥平面CEF 所以,平面MDO∥平面CEF. 故DM∥平面CEF.
(2)方法1:因为四边形ABCD是菱形,所以AC?BD. 又因为ED?平面ABCD,AC?平面ABCD,所以ED?AC.且ED面DEF.
设BD?2,则A到平面DEF的距离AO?3. 因为点M是线段AE的中点,所以M到平面DEF的距离h?在RT△EDA中,ED?1,AD?2,所以DM?5. 213AO?. 22BD?D,所以AC?平
3h15?2?设直线DM与平面DEF所成角为?,则sin??. DM552故直线DM与平面DEF所成角的正弦值为15. 5方法2:取AB的中点为G,连接DG,则DG?DC.
以D为坐标原点,分别以DG,DC,DE为x轴,y轴,z轴建立空间直角坐标系.取BD?2,?3?31?11?0,0?,M?E0,0,1则D?0,,,,?,F1??????2??2,2,?. 22?????31?所以DE??0,1?0,1?,DF???2,2,?.
???z?0??n?DE?0??z?0?设平面DEF的法向量n??x,y,,即?3,解得?. z?,则?1x?y?z?0y??3x?????n?DF?0?220. 可取法向量n?1,?3,??33??311?DM?n22?15 又DM??,则,?,cosDM,n????222?5?5?DM?n??2???2????15故直线DM与平面DEF所成角的正弦值为.
511?20.解析:(1)证明:x?1?,?lnx???
x2x??所以f??x??12x?lnx??1??lnx?2?1??1x?? x?1??x2x?则f??1??0.又f?1??0,所以f?x?的图象在点x?1处的切线方程为y?0.
1??lnx?2?1??x??(2)由(1)知f??x??.
2x因为y?lnx与y?1?11?????上的增函数,所以g?x??lnx?2?1?都是区间?0,?是
xx???0,???上的增函数.
又g?1??0,所以当x?1时,g?x??0,即f??x??0,此时f?x?递增; 当0?x?1时g?x??0,即f??x??0,此时f?x?递减; 2?1?1??1?1又f?1??0,f?????1?ln??ln2,f?2?????2222??????1??fx?maxf2,f??所以?,fx?0??????????????max??min?2????2?1?ln2.
??2?1ln2.
??1?所以f?x?在区间?,2?的取值范围为?0,2?1ln2?
???2???21.解:(1)因为kAP?kAP?y?1y?11?2?, x?1y?1y?1
y?2y?21?2?. x?4y?4y?211???1 y?1y?2由AP?BP,得kAP?kBP?即y2?y?1?0,得y?1?5 21?1?0?,由y?1,知0?k?. (2)设直线AP:y?1?k?x?1?,则Q?1?,2?k???1?k?21?k??y?1?k?x?1?1?k?2联立?2,消去x得ky?y?1?k?0,则yP?,P??. ??,??kkk??y?x????所以AP?1?kxP?1?1?k22?1?k?k22?1??1?2k?k2?1?k2,
?1?AQ?1?k2xQ?1?1?k2?1???1??1?k2,
k?k?点B到直线AP的距离d?4k?2?1?kk?12?3k?1k?12?3?k?1?k?12. 所以S1?5S2?151?5?APd?AQd??AP?AQ?d 222?2?1?1?2k5?3?k?1?3?1?2k5???2????k?1? ??1?k2?2?1?k2??2k?2?kk?k?12?k3??7k2?6k?1???? 2?k2?3?1????3??24 2?k?21故当k?时,S1?5S2有最小值?24.
3方法2:设Pt2,,则kAP?t(t?1)
??11,所以直线AQ:y?1??x?1?,则Q??t,0?. t?1t?1又直线AB:x?y?2?0,AB?32. t2?t?222?则点P到直线AB的距离为d1?点Q到直线AB的距离为d2??t2?t?22,
?t?2t?22
132?t2?t?25t?10?32所以S1?5S2?AB?d1?5d2???????t?2??24.
22?22?2故当t?2时,S1?5S2有最小值?24.
222.解:(1)证明:因为xn?2xn?1?2xn?1,所以
xn?2?2xn?1 xn?11?11?因为xn??2?xn?1???,所以xn?.
2?22?211,则xn?,从而xn?xn?1?22xn1即xn?1?,所以.
xn?1?2?xn?1?12若xn?1??x1?1111,与x1?矛盾,所以xn?1?,故xn?,2322所以xn与xn?1同号,即xn与x1同号,而x1?综上:1?xn?2. xn?1xn1 ?0,所以xn?1?0,所以
xn?1?2?2xn?1?232(2)证明:因为xn?2xn?1?2xn?1,所以
2111xn???2xn?1?xnxn?11?xn?1?1,
所以an?11111111??????? xn1?xnxn?1xn1?xn?11?xn?1xn?1xn所以Sn?a1?a2?由(1)可知所以Sn?an?111???3 xn?1x1xn?1xn?1111??n,即?3?2n. xn32xn?1xn?11x?,所以xn?1?x1?2?xn2x1S1?3?3??2n?1?,即nn?3. xn?12?121??2. xnxn?12另一方面,由(1)可知xn?1?xn,所以2xn?1?2xn?1?xn?2xn?1xn,即
所以
?1??1?11?2?2??2?,所以?2???2??2n?2n xn?1xn?1?x1??xn?所以Sn?S1?3?2n?1,即nn?1 xn?12?1综上所述:2n?1?Sn?3?2n?1,即1???Sn?3. n2?1
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库浙江省嵊州市2018届高三上学期期末教学质量调测数学试题Word版含(2)在线全文阅读。
相关推荐: