77范文网 - 专业文章范例文档资料分享平台

新人教版五年级数学上册教案带教学反思

来源:网络收集 时间:2018-11-09 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

数与它的长、宽、高有什么关系,最后通过学生观察比较,发现长方体体积的计算公式,并用字母表示。在教学完长方体的计算公式后,教师继续启发学生根据正方体与长方体的关系,联系长方体体积的计算公式,引导学生自己推导出正方体体积的计算公式。学生通过一系列的活动,清楚地了解长方体和正方体体积计算公式的来源,应用起来也就得心应手,水到渠成了。新 课 标第 一 网

3.长方体和正方体的体积(2)

【教学内容】

长方体和正方体的体积练习(教材33页练习七第8~13题)。 【教学目标】

1.进一步理解体积(容积)的意义,能较熟练的运用体积(容积)计算公式解决问题。

2.能解决体积(容积)计算的变式问题,提高运用知识的能力,体会转化思想在解题的作用。

3.经历运用长方体和正方体体积公式解决问题的过程,积累解决长方体和正方体体积计算的数学活动经验。

【重点难点】

灵活运用长方体和正方体的体积解决实际问题,进一步加深对体积意义,建立体积单位的正确表象。探索不规则物体体积的计算,体验转化的数学思想。

【复习导入】

师:前两节课我们学习了长方体和正方体的体积计算,谁能说说这两节课中我们都学到了哪些知识?

组织学生回顾汇报,老师根据学生的汇报板书: 长方体的体积=长×高×宽V=abh 正方体的体积=棱长×棱长×棱长 V=a3 长方体或正方体的体积=底面积×高 V=Sh

老师:看来,同学们对长方体和正方体的体积这块知识掌握的还不错,那么

46

今天我们继续学习这方面的知识。

【课堂作业】

教材33页练习七第8~13题。 1. 第10题把长方体的体积平均分

2. 第11题横截面的面积乘以长得一根方木的体积,再乘以500得这些木料的体积,这道题重点是要注意单位的换算。

3. 第12题长方体或正方体的体积=底面积×高,V=Sh这个公式的应用以及变形的应用。

4.第13题只有分别估计出它的长、宽、高,才能估计得更准确。 【课堂小结】

这节课你有什么收获? 【课后作业】

完成练习册中本课时练习。

3.长方体和正方体的体积(2)

长方体的体积=长×高×宽V=abh 正方体的体积=棱长×棱长×棱长V=a3 长方体或正方体的体积=底面积×高V=Sh

教学时,如果为达到目标,直接告诉学生算法,这样快捷实用,但学生得到的除了知识结果外,学习的过程、探索的过程被抹去,学生的思维训练受到扼制,一切可持续发展的因素也给拒之门外。教学时我避开这条“捷径”,让学生通过经历由“山穷水尽”到“柳暗花明”这一过程,亲身体验数学思维的逻辑重演,并在寻找解题途径的过程中,促进其思维的深层发展。

第3课时 体积单位间的进率

【教学内容】

体积单位间的进率(课本第34~35页内容及第36~37页练习八的第1~9题)。

47

【教学目标】

1.通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的改写。

2.使学生学会用名数的改写解决一些简单的实际问题。

3.培养学生根据具体情况灵活应用不同的单位进行计算的能力。 【重点难点】

掌握名数的改写方法。

【复习导入】

1.口答:说一说常用的体积单位有哪些? 2.填一填。 1千米=( )米

1米=( )分米=( )厘米 1平方米=( )平方分米 1平方分米=( )平方厘米 【新课讲授】

1.学习体积单位间的进率。

(1)老师板书教材第34页例2:一个棱长为1dm的正方体,它的体积是1dm3。

想一想,它的体积是多少立方厘米。 (2)学生读题,理解题意。

(3)老师出示棱长为1dm的正方体模型。

提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)

(4)计算。

请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米?

学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说:

48

①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。

②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。

老师根据学生的回答,板书:V=a3 10×10×10=1000(cm3) 1dm3=1000cm3

(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少? 1立方分米=1000立方厘米(老师板书)

(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。 老师板书:1立方米=1000立方分米 (7)观察板书内容。

想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。

2.体积单位,面积单位,长度单位的比较。

(1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。 (2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。

(3)体积单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。

3.学习体积单位名数的改写。

(1)回忆:怎样把高级单位的名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率)

(2)学习教材第35页的例3。

板书:3.8m3是多少立方分米?2400cm3是多少立方分米? 请学生尝试独立解答,老师巡视。 指名让学生说一说是怎样做的。

板书:3.8m3=(3800)dm32400cm3=(2.4)dm3 (3)学习教材第35页的例4。

49

学生理解题意明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少?

学生独立思考,然后解答,指名板演。 V=abh=50×30×40=60000(cm3)=60(dm3)=0.06(m3)

4.巩固:完成课本第35页的“做一做”第1题。学生完成后,要求他们口述解答的过程。

3.5dm3=(3500)cm3700dm3=(0.7)m3 【课堂作业】

完成课本第36~37页练习八的第1~9题。

1.第1题此题是巩固单位间进率的习题。练习时先让学生独立完成,反馈时,让学生说说思考的过程。

2.第2题这是一道实际应用的问题。包装盒是否能够装得下玻璃器皿,关键要看包装盒的高是多少,因为从已知条件中我们已经知道包装盒的长、宽都比玻璃器皿的长、宽要长。只要包装盒的高大于18cm,就能够装得下。练习时,让学生独立计算出包装盒的高,提醒学生注意统一计量单位后,全班反馈。

3.第3~9题由学生独立完成。 【课堂小结】

今天我们学习了体积单位间的进率,在这节课里,你有哪些收获呢? 【课后作业】

完成练习册中本课时练习。

第3课时 体积单位间的进率 1立方分米=1000立方厘米 1立方米=1000立方分米

教学体积单位之间的进率时,教师先让学生说出常用的体积单位有哪些,再用棱长为1dm的正方体模型,让学生说出它的体积,根据棱长1dm与1cm之间的关系,从而推导出1dm3=1000cm3,并用相同的方法让学生推导出1m3=1000dm3,然后总结出:相邻的两个体积单位之间的进率都是1000。最后,

50

目 录

一、观察物体(三)(2课时) 观察物体

二、因数与倍数(7课时) 1.因数和倍数

2.2、5、3的倍数的特征 3.质数和合数

三、长方体与正方体(13课时) 1.长方体和正方体的认识 2.长方体和正方体的表面积 3.长方体和正方体的体积 整理和复习 探索图形

四、分数的意义和性质(20课时) 1.分数的意义 2.真分数和假分数 3.分数的基本性质 4.约分 5.通分

6.分数和小数的互化 整理和复习

五、图形的运动(三)(3课时) 六、分数的加法和减法(7课时) 1.同分母分数加、减法 2.异分母分数加、减法 3.分数加减混合运算 打电话

七、折线统计图(3课时)

八、数学广角——找次品(2课时) 九、总复习(4课时) 1.数与代数 2.空间与图形 3.观察物体与统计

1

1 观察物体(三)

【教学目标】

1.使学生进一步经历观察的过程,让学生认识到从正面看到的平面图形,它的实物图有多种摆放方式。

2.通过观察,能正确辨认从不同方向(正面、左面、上面)观察到的立体图形。

3.能根据从正面、左面、上面观察到的平面图形还原立体图形,进一步体会从三个方向观察就可以确定立体图形的形状。

4.通过观察、操作等活动,培养学生的观察能力、动手能力,培养空间想象力和推理能力。

【重点难点】

1.能从正面看到的平面图形画出不同摆放方式的小正方体。

2.引导学生进行空间图形的平面和立体想象找出被遮挡住的小立方块。

【教学指导】

1.准备好必要的教具和学具。由于本单元有大量的观察和画图等活动。所以,除教具外,最好每个学生都准备一套相应的学具。老师可以结合实际,指导学生自制学具。并要求每位学生要备好直尺等画图工具。

2.注意让学生真正地、充分地进行活动和交流。只有在活动的过程中,学生才能真正经历观察、想象、猜测、分析和推理等过程,学生的空间想象力和思维能力才能得以锻炼,空间观念才能得到发展。因此,老师要切实组织好教学的每一个步骤,使活动有目的、有秩序的开展,要让所有的学生都真正地,实实在在地进行观察和操作。注意不要让老师的演示或少数学生的活动和回答来代替每一位学生的亲自动手、亲自体验和独立思考。活动课的一个重要方面是培养学生的交流表达能力,教学中应鼓励学生敢于发表自己的意见,与同伴交流自己的想法,在交流中理清思路,互相启发。

【课时安排】

2

建议共分为2课时:

第1课时观察物体(1)1课时 第2课时观察物体(2)1课时 【知识结构】

第1课时 观察物体(1)

【教学内容】

教材第2页例1,完成教材第3页练习一第1、2、4、5题。 【教学目标】

1.结合现实生活,通过具体观察活动,使学生能体验从正面看到的平面图形,它的实物图可以有多种摆放方式。

2.学生能通过从正面看到的平面图形画出不同摆放方式的小正方体。 3.通过观察、操作等活动,培养学生的观察能力、动手能力,发展空间观念,初步学会欣赏生活中的数学美。

4.在活动中培养数学学习热情以及良好的交流、合作习惯。 【重点难点】

能从正面看到的平面图形画出不同摆放方式的小正方体。

【复习导入】

师:同学们都喜欢玩积木吗?下面我们来玩一个搭积木的游戏。请用手中的4块积木搭一个你喜欢的形状。谁来展示一下你的摆法?

生展示不同的摆法。

师:通过刚才的游戏,老师发现同学们越来越喜欢动脑筋了,大家探索出了这么多有趣的摆法。老师真为你们高兴!这一节课希望大家积极动手动脑,我们来继续探索《观察物体》中的奥秘,好吗?(板书课题)

【新课讲授】

3

1.出示教材第2页例1

(1)师:看同学们刚才学得真好,我又给大家提供了一个玩积木的机会(出示课件):现在有四块积木,如果我想摆出从正面看是这一形状(如图),

应该怎样摆?有几种摆法?

请同学们以小组为单位,合作解决这一问题。 教师巡视指导。

师:刚才老师发现好多小组都在积极尝试多种不同的摆放方法,这种探索精神非常好,有谁愿意到讲台上,向大家介绍一下你们小组集体的智慧成果?

生摆

师:谁还有不同的方法?生摆

师:电脑出示六种基本摆法,同时指出在这六种方法的基础上再进行移动,就延伸出了多种摆法。

(2)如果再加一个小正方体,要保证从正面看到的形状不变,你可以怎样摆?同学们以小组为单位,合作解决。

教师巡视指导。 学生展示成果。

(3)同学们真棒!想出了这么多种摆法,你们能尝试着找到一个如何摆放的规律吗?可以讨论。

生讨论交流得出:先照图用三个小正方体摆好从正面看到的基本形状,然后余下的一个正方体可以摆在原来物体的前边或后边,都可让正视图保持不变。如果摆在前边,从正面能看到这个正方体,它必须与原来物体里的正方体对齐着摆;如果摆在后边,从正面不能看到这个正方体,它既可以与原来物体里的正方体对齐着摆,也可以不对齐着摆。

【课堂作业】

完成教材第3页练习一第1、2、4、5题。 【课堂小结】

这节课我们学习了从正面看到的平面图,它的实物图有多种摆放方式,你学会了吗?你还有什么收获呢?

【课后作业】

4

完成练习册中本课时练习。

第1课时 观察物体(1)

先摆好从正面看到的基本形状,余下的可以摆在原来物体的前边或后边.根据从一个面看到的图形还原出的立体图形有多种摆法.

游戏是学生十分喜爱的一种活动,教师抓住学生的年龄特征,用游戏作为切入点,引发学生强烈的兴奋感和亲切感,拉近了师生间的距离,营造积极、活跃、向上的学习氛围,为学习新知创设了良好的情境。通过小组合作,经历“研究视图───构思摆法───摆出物体──观察验证”,不仅找到了摆放的方法,更重要的是它为学生学习多角度思考问题、多途径探索解决问题的方法提供了丰富的资源,为学生亲自经历探索问题和解决问题的过程提供了良好的机会。

第2课时 观察物体(2)

【教学内容】 教材第2页例2。 【教学目标】

1.能正确辨认从不同方向(正面、左面、上面)观察到的立体图形。 2.能根据从正面、側面、上面观察到的平面图形还原立体图形,进一步体会从三个方向观察就可以确定立体图形的形状,能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的正方体的数量范围。

3.让学生主动参与观察、操作、交流等活动,进一步学习利用实物或图形进行直观和有条理的思考,发展空间观念。

【重点难点】

5

【复习导入】

口答:1米、1分米、1厘米是什么计量单位? 1平方米、1平米分米、1平方厘米又是什么计量单位? 【新课讲授】 1.认识体积的概念。

(1)故事导入 :多媒体课件演示乌鸦喝水的故事。看完后,老师提问:乌鸦是怎么喝到水的?为什么把石头放进瓶子里,瓶子里的水就升上来了。

引导学生说出石头占了水的空间,所以水就升上来了。

(2)实验证明老师:石头真的占了水的空间吗?我们再来做个实验验证一下。取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒入第二个杯子,让学生观察会出现什么情况。

学生通过观察会发现:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了一部分空间,所以装不下了。

(3)观察比较

观察:电视机,影碟和手机,哪个所占的空间大?教师:不同的物体所占空间的大小不同。

(4)体积概念的引入

教师:物体所占空间的大小叫做物体的体积。 提问:体积与表面积的概念相同吗?为什么? 2.体积单位的认识。 (1)出示两个长方体。

提问:怎样比较这两个长方体体积的大小呢?(要比较这两个长方体体积的大小就要用统一的体积单位来测量)

(2)根据常用的长度单位和面积单位,想一想常用的体积单位有哪些? 教师:计量体积要用体积单位,常用的体积单位有立方厘米、立方分米、立方米,可以分别写成cm3,dm3和m3。

(3)认识体积单位。

老师:请你猜一猜1cm3,1dm3,1m3是多大的正方体。

41

学生讨论后回答:棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。教师请学生看教材,证实同学们的回答是正确的。

(4)再次感受体积单位实际的大小。

①一粒蚕豆的大小是1cm3,请同学们估出身边体积是1cm3的物体。 ②一个粉笔盒的大小是1dm3,请同学们用手捧出1dm3大小的物体。 ③用3根1m长的木条做成一个互成直角的架子,把它放在墙角,看看1m3有多大,估计一下,大约能容纳几个同学?

教师:立方厘米,立方分米,立方米是常用的体积单位,要计算一个物体的体积,就要看这个物体中含有多少个体积单位,请同学们用4个1cm3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?(4cm3)为什么?(因为它是由4个体积是1cm3的小正方体摆成的)

(5)练习:完成课本第28页“做一做”第1、2题。 【课堂作业】

教材第32页练习七1~5题。 【课堂小结】

教师:同学们,今天我们认识了体积和体积单位。它们在我们的生活中应用非常广泛。通过今天的学习,大家又有什么收获呢?

【课后作业】

完成练习册中本课时练习。

1.体积和体积单位

物体所占空间的大小叫做物体的体积。常用的体积单位有立方厘米,立方分米,立方米。可分别写成cm3,dm3,m3。

长方体和正方体是最基本的立体图形,在这节课的教学中,通过课件演示“乌鸦喝水”的故事,再让学生亲身验证“石头占了一部分的空间,所以第一杯水无法全部倒入”这一结论。继而让学生对电视机,影碟机,手机三种物体进行比较,从而引出体积的概念。学生虽然知道了物体的体积概念,但还要让学生建立良好

42

的空间观念,继而让学生进行猜想,并进行验证和感受,同时还要将体积单位和面积单位进行区分,加深学生对体积单位的认识。

2.长方体和正方体的体积(1)

【教学内容】

长方体、正方体的体积计算(课本第29~31页的内容,课本第30页的例1及第32页练习七的第5~6题)。

【教学目标】

1.通过讲授,引导学生找出规律,总结出体积的公式。 2.指导学生运用公式正确计算长方体、正方体的体积。 3.培养学生积极思考、探索新知的思维品质。 【重点难点】

长方体、正方体体积计算。 【教学准备】 正方体木块若干。

【复习导入】

1.什么叫体积?计量物体的体积常用的单位有哪些? 2.怎样计算一个物体的体积呢? 【新课讲授】 1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。 (1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

43

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长×宽×高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh (3)质疑:求长方体的体积公式需要知道什么条件? 2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:V=a·a·a=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

44

3.运用长方体的体积公式解决问题。 (1)出示教材第30页的例1。 (2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。 (4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。 (6)老师订正书写。V=abh=7×4×3=84(cm3) (7)看图,学生独立在练习本上完成。 (8)指名板演,集体订正。 【课堂作业】

完成课本第31页“做一做”第1、2题。 【课堂小结】

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题? 【课后作业】

完成练习册中本课时练习。

2.长方体和正方体的体积(1)

长方体的体积=长×宽×高 V=abh

正方体体积=棱长×棱长×棱长 V=a·a·a=a3

体积对学生来说是一个新概念,由认识平面图形到认识立体图形是学生空间观念的一次重大的发展,然而此时,学生对立体的空间观念还很模糊,教师应特别注意加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体体积计算公式的理解。在教学时,教师让学生把24个1立方厘米的小正方体摆放出不同的长方体,并把长、宽、高的数据填入表格中,启发学生思考怎样摆才是一个长方体,再引导学生进一步思考所摆的长方体所含小正方体的个

45

9题)。

【教学目标】

1.通过观察、操作等活动,认识正方体、掌握正方体的特征。 2.通过观察比较弄清长方体与正方体的联系与区别。

3.通过学习活动培养学生的操作能力,发展学生的创新意识和空间概念。 【重点难点】 1.认识正方体的特征。 2.理清长方体和正方体的关系。 【教学准备】 正方体教具、课件。

【复习导入】

1.回忆长方体的特征,请学生用语言进行描述。

2.操作:同桌交流,分别说出长方体的棱在哪儿?几条棱可以分别分成几组?相交于同一个顶点的三条棱叫做什么?

教师:今天这节课,我们继续学习一种特殊的立体图形。 (板书课题:正方体) 【新课讲授】 探索正方体的特征。

1.想一想。正方体具有什么特征呢?我们在研究时应该从哪方面去思考?(也应该从面、棱、顶点这三个方面去考虑)

2.合作学习。

学生根据手中的正方体学具,小组合作探究。 3.集体交流。

(1)组:正方体有6个面,6个面大小都相等,6个面都是正方形。 (2)组:正方体有12条棱,正方体的12条棱的长度相等。

(3)组:正方体有8个顶点。请学生到讲台前,手指正方体模型,按“面、棱、顶点”的特征有序地数一数,摸一摸,其他同学观察思考。

教师问:怎样判断一个图形是不是正方体?

31

4.教学正方体和长方体的联系与区别:

老师出示一个正方体教具。请学生讨论:它是不是一个长方体? 学生充分讨论,集体交换意见。

学生甲组:这个物体的六个面都是正方形,它不是长方体。

学生乙组:长方体6个面是对面的面积相等,而这个物体是6个面的面积相等,所以我们也认为它不是长方体。

学生丙组:我们组有不同意见,因为我们认为它的6个面虽然都是正方形,不是长方形,但是正方形是特殊的长方形,它的12条棱也包括每组4条棱长度相等;6个面面积相等,也包括了相对的面面积相等这些条件,所以我们认为它是长方体。

教师根据学生的发言进行总结:正方体是特殊的长方体,长方体中包含着正方体,用集合圈表示为:

教师:我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。 【课堂作业】

1.教材第20页的“做一做”。

2.教材第21~22练习五的第4、5、8、9题。 【课堂小结】

今天这节课,大家有什么收获?(学生畅所欲言谈收获,教师将学生的发言进行总结)

【课后作业】

完成练习册中本课时练习。

第2课时正方体

有6个面,都是正方形,每个面的面积相等。 有12条棱,每条棱长度相等。有8个顶点。

32

1.在复习长方体的特征后,让学生学会把学习长方体的特征的方法迁移到学习正方体的特征上来,使学生又快又好地掌握了正方体的特征。

2.把猜想和探索实践紧密结合,既可以激发学生的探索精神,又让他们享受猜想的成功体验,更好地发挥他们的创造力,同时“长方体和正方体的联系与区别”的问题也就迎刃而解了,只是学生需对体验中获得的有关知识进行搜索、归纳、整理而已。

2.长方体和正方体的表面积 第1课时长方体和正方体的表面积(1)

【教学内容】

长方体和正方体的表面积概念,长方体和正方体表面积的计算(教材第24页例1、例2,以及第25~26页练习六第1、2、3、4、6、7题)。

【教学目标】

1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。

2.会用求长方体和正方体表面积的方法解决生活中的简单问题。 3.培养学生分析能力,发展学生的空间概念。 【重点难点】

掌握长方体和正方体表面积的计算方法。 【教学准备】

长方体、正方体纸盒,剪刀,投影仪。

【复习导入】

1.什么是长方体的长、宽、高?什么是正方体的棱长?

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

【新课讲授】

33

1.教学长方体和正方体表面积的概念。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

2.学习长方体和正方体表面积的计算方法。

(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积? (2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。 (4)集体交流反馈。

老师根据学生的解题思路进行板书。 方法一:长方体的表面积=6个面的面积和

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)

方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2) 方法三:(上面的面积+前面的面积+左面的面积)×2 (0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)

34

(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?

(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

【课堂作业】

1. 完成教材第23页“做一做”。 2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。 【课堂小结】

今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?

【课后作业】

完成练习册中本课时练习。

第1课时长方体和正方体的表面积(1)

长方体的表面积=(长×宽+长×高+宽×高) ×2 正方体的表面积=边长×边长×6

本课时主要教学长方体、正方体表面积的概念和计算方法。教材先通过把一个长方体或正方体纸盒的6个面展开,帮助学生认识表面积的概念。这样可以把表面积的概念与刚刚建立起来的长方体和正方体的特征很好的联系起来,为下面学习计算表面积做好准备。接着,通过例1教学长方体表面积的计算方法。然后安排\试一试\学习立方体表面积的计算方法。关于长方体表面积的计算,教材中没有给出计算公式,而是启发学生用不同的方法列式计算,这样安排有利于他们更好的掌握表面积的概念及有关计算,有利于更好的发展学生的空间观念。

第2课时 长方体和正方体的表面积(2)

【教学内容】

35

求一些不是完整六个面的长方体、正方体的表面积,(教材25页第5题、教材第26页第9、10题)。

【教学目标】

1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。

2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲。 【重点难点】

能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。

【复习导入】

师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)

1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板? 2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

【新课讲授】 1.教材25页第5题

(1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?

(2)学生读题,看图,理解题意。

(3) “上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)

(4)学生尝试独立解答。 (5)集体交流反馈。

方法一:10×12×2+6×12×2=240+144=384 (cm2) 方法二:(10×12+6×12)×2=(120+72)×2=384 (cm2)

36

答:这张商标纸的面积至少需要384平方厘米。 2.教材26页第8题

(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)

(2)学生读题,看图,理解题意。

(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)

(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。 3×3×5=9×5=45 (dm2)

答:制作这个鱼缸时至少需要玻璃45平方分米。 【课堂作业】

完成教材第26页练习六第9、10题。 【课堂小结】

提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的表面积,这节课你有什么收获?

【课后作业】

完成练习册中本课时练习。

第2课时 长方体和正方体的表面积(2)

一个长方体的饼干盒,长10cm、宽6cm、高12cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?

方法一:10×12×2+6×12×2 =240+144 =384 (cm2)

方法二:(10×12+6×12)×2 =(120+72)×2

=384 (cm2) 答:这张商标纸的面积至少需要384平方厘米。

一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃

37

多少平方分米?

3×3×5 =9×5 =45 (dm2)

答:制作这个鱼缸时至少需要玻璃45平方分米。

在实际问题教学中要使得学生通过活动,根据所学的知识发现问题,让学生自己提出问题,猜测结果,同时教师进行适当引导。整个活动过程,要让每一个同学都参与这种研究学习的过程,通过本身的实践活动去寻求问题的答案,形成科学的世界观和价值观,利用本身所掌握的知识提高科学探究的能力。学生从本质上理解了表面积的概念而且学会了如何根据实际情况求解长方体某几个面的面积之和,使得学生真正融入到课堂的教学中,体现自身的学习主体地位和主人翁感。

第3课时长方体和正方体的表面积(3)

【教学内容】

长方体和正方体的表面积练习(教材26页第11~13题)。 【教学目标】

1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。

2.培养学生分析、解决问题的能力,以及良好的思维品质。 【重点难点】

掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。

【复习导入】

1.如果告诉了长方体的长、宽、高,怎样求它的表面积? 2. 如果要求正方体的表面积,需要知道什么?怎样求?

3. 一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少

38

平方米?表面积是多少平方米?

4.一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?

【课堂作业】

完成教材第26页第11~13题。 1.第11题

(1)分析题目的已知条件和问题。

(2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么? (3)列式解答:

4×[8×6+(8×3+6×3)×2-11.4] =4×[48+42×2-11.4] =4×120.6=482.4(元)

答:粉刷这个教室需要花费482.4元。 2.第12题

这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的面积不能算在表面积里。

分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。 左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。 解:涂黄油漆[40×(65-10)+40×65+40×40]×2 =(2200+2600+1600)×2=12800(cm2)

涂红油漆40×65×2+40×40×3=5200+4800=10000(cm2)

答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。 3.第13题

提示:把一个长方体从中间截断,就可以分成两个正方体。

让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。

小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。

【课堂小结】

39

通过这节课的学习,你有什么收获?还有什么问题? 【课后作业】

完成练习册中本课时练习。

第3课时长方体和正方体的表面积(3)

长方体的表面积≡(长×宽+长×高+宽×高) ×2 正方体的表面积≡边长×边长×6

长方体、正方体的特征、棱长和、表面积、体积的计算方法这两块内容是互相联系,密不可分的。联系长方体正方体的特征,帮助学生总结计算方法,使学生不是单纯的记忆特征,也不是死记硬背公式,沟通了知识间的内在联系,把所学知识形成知识网络。这样学生对知识的掌握和运用才会更加牢固。这节课,使我深深地认识到构建知识网络,培养空间观念,把所学知识运用到实际生活中去,是帮助学生掌握知识的关键,更是使我们的数学课堂鲜活而又精彩的关键。

1.体积和体积单位

【教学内容】

体积和体积单位(教材第27、28页的内容、第28页的“做一做”,及第32页练习七的第1~5题)。

【教学目标】

1.使学生理解体积的概念,了解常用的体积单位,形成表象。 2.培养学生比较、观察的能力。

3.通过学生的动手实践,加强学生空间概念的发展。 【重点难点】 常用体积单位。 【教学准备】

“乌鸦喝水”课件,玻璃杯、水、沙子、木条……

40

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库新人教版五年级数学上册教案带教学反思在线全文阅读。

新人教版五年级数学上册教案带教学反思.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/262205.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: