第九单元 探索乐园
■ 教材分析
本单元教材共安排两个主题内容:一是植树问题,探索并总结解答植树问题的一般思路和方法,构建解决植树问题的数学模型;二是数图形问题,探索线段上的点数与线段条数之间的关系,总结出数线段的方法和规律。结合这两个主题内容,教材还设计了一些用类似方法解答的其他问题。
本单元的两个主题内容,从表面上看,一个是数与代数中的典型问题,一个是图形与几何中的典型问题,好像没有什么直接的联系;但是从直观图示看,二者有着密切的关系。如:线段上的点就相当植树问题中两端都种树的情况,线段上相邻两个字母组成的线段就相当于植树问题中每两个树之间的间隔。 ■ 教学目标
1、结合具体事例,探索并发现植树问题中植树棵树与间隔数之间的关系,会用“植树问题”的思想和方法解答其他简单实际问题。
2、探索并发现线段上的点数与线段条数之间的规律,能利用发现的规律解决类似的数图形的问题。 3、在借助直观图探索植树问题和探索线段规律的过程中,能进行有条理的思考,
能清楚地表达自己的解题思路和方法,发展初步的数学归纳和推理能力。 4、了解分析实际问题的方法,获得解决问题的经验,尝试解释自己的思考过程。 5、在教师的鼓励和引导下,体验总结、归纳解题规律的过程,获得成功的乐趣,建立学好数学的自信心。 ■ 重点、难点 重点
1、结合具体事例,探索并发现植树问题中植树棵树与间隔数之间的关系,会用“植树问题”的思想和方法解答其他简单实际问题。
2、探索并发现线段上的点数与线段条数之间的规律,能利用发现的规律解决类似的数图形的问题。
难点 在借助直观图探索植树问题和探索线段规律的过程中,能进行有条理的思
考,能清楚地表达自己的解题思路和方法,发展初步的数学归纳和推理能力 ■ 教学建议
1、引导学生经历解决问题的全过程。
教学时可结合情境图(示意图)出示问题,让学生经历整个分析、思考的全过程并且初步感受到:遇到问题时,可以先给出一个猜测,要判断这个猜测对不对,可以用比较简单的例子来验证,并且可以从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。 2、培养学生建立数学模型的能力。
教师要指导学生通过线段图建立数学模型。可让学生用画示意图或线段图的方法帮助思考,通过观察示意图或线段图,把分割点数和栽树的棵数一一对应起来,发现并初步总结出栽树的棵数与间隔数之间的关系。此外,还可适当拓展植树问题数学模型的逆向应用。 3、重视知识的迁移和转化。
教学数线段的条数时,要鼓励学生用自己的方法迁移植树问题的问题解决模型来探索规律,让学生在知识的迁移和转化中学习解决问题的方法。 4、注意学生核心学习素养的培养。
教学时,教师要注重学生读题、审题习惯的培养,放手让学生自主探究,在
对比与沟通中,“让学生掌握以思想方法作灵魂的数学知识,把数学‘学懂’、‘学活’、‘学深’”。 ■ 课时安排
本单元用3课时完成教学,其中机动1课时。 课题 课时 植树问题 1 探索数线段的规律 1 机动 1 总计 3 9.1 植树问题
? 教学内容
教材第94、95页 植树问题
? 教学提示
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植
树问题通常是指沿一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、广场敲钟等,这些问题情境中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中,“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线(如正方形、长方形或圆形等)。即使是关于一条线段的植树问题,也可能有不同的情形(如两端都要栽,只在一端栽另一端不栽,或是两端都不栽)。
《义务教育数学课程标准(2011年版)》强调:“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而让学生在获得对数学理解的同时也在思维能力、情感态度与价值观等多方面得到进步和发展”。本单元,教材在编排上注重了引导学生进行观察、猜测、验证、推理等数学活动,使学生初步体会解决植树问题的思想方法(模型思想),从而培养学生从实际问题中探索解决问题的有效方法的能力。在教学植树问题时,教师要引导学生根据实际问题情境,从简单的情况入手,在解决问题的分析、思考过程中,逐步发现隐含的规律,经历建立数学模型的过程,帮助学生积累数学活动的经验,提高学生解决实际问题的能力。
? 教学目标
知识与能力
了解间隔数的含义,建构解答植树问题的一般方法模型,能解答类似的简单实际问题。 过程与方法
结合具体事例,经历分析问题、解决问题、总结解答植树问题一般方法的过程,建立起解答植树问题的思想方法模型。 情感、态度与价值观
在用植树问题的思路和方法解答其他问题的过程中,获得成功的体验,感受数学与生活的密切联系。
? 重点、难点
重点 理解间隔数的含义,能求出间隔数并根据两端植树的情况,利用模型思想
求出植树的棵数。
难点 运用植树问题的模型思想方法解决简单实际问题。
? 教学准备
教师准备: 多媒体教学课件。 学生准备: 铅笔、橡皮、直尺。
? 教学过程
(一)新课导入 猜谜导入。
师:在上新课之前,我们先猜个谜语放松一下,好吗?
(课件显示):两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。 生:手
师:大家真聪明,就是我们的手。瞧,我们每个人都有一双灵巧的手,其实,在
我们的手上也隐藏了好多数学只是,同学们想知道吗? 师:看着老师的手,你从中得到了什么数字? (5 5个手指)
师:老师也从中得到了一 个数字“4”,你们知道它指的是什么吗? (4个空格)
师: 对了,手指间的空格,在数学上我们叫做间隔。我们手上每两个手指之间
有一个间隔,大家仔细看老师的手,5个手指,有几个间隔? 师:4个手指有几个间隔,3个手指呢?
师:手指数与间隔数其中的关系你发现了吗?
(手指数比间隔多1) 师:还可以这样说?
(间隔数+1=手指数)
师:在我们的手上都有数学只是,看来数学真的是无处不在。今天我们学习和间
隔数有关的问题,它就是“植树问题”。
设计意图: 在猜谜语活动中,体验间隔数的含义、手指个数与间隔数的关系,为本课时教学“植树问题”探究间隔数和棵数大小基础。 (二)探究新知
1、出示情境,获取信息。
师:学校为了改变校园环境,要在校园内种上一些树,校委会决定公开招聘植树
方案设计师,你们想不想成为我们校园的植树方案设计师呢? 师:我们一起来先看看设计的具体要求吧!(课件显示)
学校计划在40米长的教学楼前种一排玉兰树,每隔5米种一棵。 请按照要求,设计一份植树方案,并说明你的设计理由。 师:从要求上,你获得哪些信息?
生:40米长的教学楼前,每隔5 米种一棵玉兰树 。 师:每隔5 米是什么意思?
生:两棵树之间的间隔是5 米,也就是每两棵树之间的距离是5米。 2、提出问题,设计方案。
师:现在,请4 个同学为一组开始设计吧,看看哪组设计的方案最多,各需要多少棵玉兰树呢?(教师巡视)
3、讨论交流、展示方案。 方案一:一端不种,另一端种。(如下图,也可以是线段示意图)
40÷5=8(棵),有8个间隔,我们只种一头,另一头不种,所以我们只用8棵树。
方案二:两端都种。(如下图,也可以是线段示意图)
40÷5=8(棵)就说明有8个间隔,为了让我们的学校更美,我们在两头都种上树,所以我们再用8+1=9棵树。
方案三:两端都不种 。(如下图,也可以是线段示意图)
40÷5=8(棵),有8个间隔,我们想学校的树已经很多了,为了让我们的活动范围更大,所以在两头都不种树,所以把8-1=7棵。
4、探究发现、总结规律。 师:同学们设计的真不错,来我们一起看看这三个设计方案中种的棵数与间隔数
有什么关系呢?
第一方案 一端植树,另一端不种,种树棵数与间隔数有什么关系? 板书:只栽一端时,种树棵数=间隔数
第二方案 两端都植树,种树棵数与间隔数有什么关系?
板书:两端栽树时,种树棵数=间隔数+1
第三方案 两端都不种,种树棵数与间隔数有什么关系? 板书:两端都不种,种树棵数=间隔数-1 5、教学例2 。
师:我们一起来看一个生活中的一个问题吧,你会解答吗?(课件显示 )
同学们在全长是60米的小路同一侧植树,每隔6米种一棵,两端各种一棵,一共需要多少棵树苗?
师:大家一起把题读一遍,从题中你了解到了哪些信息? (预设)
生1:路程是60米。
生2:小路同一侧植树,两端各种1棵。 生3:每两棵树之间的间隔是60米。
师:两端各种一棵是什么意思?同桌讨论一下,怎么计算?
(预设)
60÷6+1=11(棵)
师:同学们真棒,什么也难不倒你们。
师:如果这条路的两侧都植树,怎样计算?
学生自己独立完成。
使学生明白:要求出两侧都种树苗的棵数,只要求出一侧种树的棵数,再乘2就可以了。
设计意图: 在方案征集中体验三种不同的植树方案,在讨论交流中理解“间隔”的含义,在探究画图中建构起三种方案解决的数学模型,最后在实际问题解决中体验运用模型思想解决问题的优越性。 (三)巩固新知
1、教材第95页“练一练”第1、2、3题。 2、教材第95页“练一练”第4题。 设计意图:
1、在练习中进一步熟悉植树问题的一端种、一端不种;两端都种、两端都不种的三种情形,逐步熟悉和建构解决此类问题的数学模型方法。
2、利用植树问题的模型方法解答上下楼的台阶问题,体会数学模型思想在解决问题中的运用。 (四)达标反馈 1、填一填。
(1)工人叔叔在路的一边安装路灯,一共安装了6座,从第一座到最后一座一
共有( )个间隔。
(2)一排同学之间有7 个间隔,这一排有( )个同学。
(3)小红住的楼房每上一层要走20个台阶,从二楼到四楼要走( )个台阶。 2、有一条长800米的公路,在公路的一侧从头到尾每隔20米栽一棵杨树,需多少棵杨树苗? 3、在一条长500米的公路一侧架设电线杆,每隔50米架设一根,若公路两端都不架设,共需电线多少根?
4、在一条长50米的跑道两旁,从头到尾每隔5米插一面彩旗,一共插多少面彩旗?
5、有一条路长 1000 米,在路的一侧每隔5米栽一棵垂柳,可种植垂柳多少棵? 6、两座楼房之间相距 56 米,每隔 4 米栽雪松一棵, 一行能栽多少棵? 答案: 1、(1)5(2)8(3)40 2、 800÷20+1=41(棵) 3、 500÷50-1=9(根)
4、50÷5=10 (面) 10+1=11 (面) 11×2=22 (面) 5、 1000÷5+1=201(棵) 6、 56÷4-1=13(棵) (五)课堂小结
师:同学们,生活中植树问题的例子有很多很多,有时也不一定非得真的种树,
比如马路旁每隔一定距离放置一座路灯,路灯的数量和间隔的多少可以看成是植树问题。还比如电线杆呀!教室的课桌安排呀等等都是植树问题。今天我们大家一起探究了植树问题,体会了植树问题与生活间的密切联系。现在和同桌说一说,通过本课的学习,你有哪些收获?还有哪些困惑?
设计意图: 反思是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。 (六)布置作业
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2017~2018学年度冀教版四年级上册数学第九单元探索乐园教学设计在线全文阅读。
相关推荐: