e?2s1. 设Go?s??,T=1s,试用大林算法设计单位阶跃输入时数字控制器D?z?。设等效闭环系统的时间
s?s?1?常数T0=2s。设计的大林数字控制器存在振铃现象吗?如何消除? 解:
包括采样保持器在内的广义对象的脉冲传递函数为
G?z??0.368?1?0.718z?1?z?3?1?z?1??1?0.368z?1?
现在构成T0=2s的一阶闭环系统,纯滞后也为2s。
e?2se?2s0.5e?2s??s????
2s?12s?1s?0.5
?1?e?s0.5e?2s?0.393z?3= ??z??Z???1?ss?0.5?1?0.607zD?z????z?G?z???1???z???=
?1?0.781z??1?0.607z?11.068?1?z?1??1?0.368z?1?z?3?1?0.393z?3?
存在振铃现象,将D(z)中的因子1+0.718z-1改为1+0.718即可。修改后的D(z)为:
2.
D?z??0.622?1?z?1??1?0.368z?1?z?31?0.607z?1?0.393z?3
已知被控对象的传递函数为
Go?s??1e?2s
4s?11e?2s
2s?1试求达林算法数字控制器,使系统的闭环系统的传递函数为
??s??设采样周期T=1 s。
解:
N =τ/T = 2/1 = 2。
?1?e?sT??1?e?sT?1G?z??Z??Go?s???Z??e?2s?=
4s?1?s??s?
0.221z?3?1? ?1?z?zZ= ?1???4s?1?1?0.779z?1?2
?1?e?sTe??s??1?e?sT1?2s??1??1?2== 1?zzZ??z??Z??Z?e???????T?s?1?2s?1?2s?1??s??s
0.393z?3 =
1?0.607z?1 ∴ 达林数字控制器为:
1.778?1?0.779z?1???z?1=D?z???G?z?1???z?1?0.607z?1?0.393z?3
e?s3. 设工业对象G?s??,采样周期T=1s,期望闭环系统的时间常数T
3.34s?1字控制器及单位阶跃输入下的系统响应输出序列。 解:
∵ Tτ=2s,τ=1s,N=τ/T = 1。
τ
=2s。试比较消除振铃前后的数
e?se?s∴ ??s??=
T?s?12s?1∴
???1?e?sTe?s?10.394z?2?1?1??z??Z? ??z??1?z?Z?s2s?1?=?1s2s?11?0.607z?????? 同样,求得:
???1?e?sTe?s?1?1?1G?z??Z??z?1?zZ???? ??s3.34s?1??s?3.34s?1??=
0.144z?2?1?0.733z?1?1?0.741z?1
所以,大林数字控制器为:
??z?1?0.741z?10.394z?21?=D?z???G?z?1???z?0.144z?2?1?0.733z?1?1?0.607z?1?0.394z?2
=
?1?0.733z??1?z??1?0.39z??1?1?12.736?1?0.741z?1?
∵ Tτ < T1
∴ RA > 0,存在振铃现象。
Y(z)??z?R?z? U(z)??G?z?G?z?
1?0.741z?110.394z?2 =
1?0.607z?11?z?10.144z?2?1?0.733z?1?
=
?1?0.607z??1?z??1?0.733z??1?1?1?12.736?1?0.741z?1?
=2.736?0.364z?1.88z?2?0.634z?3?1.465z?4??
RA = u(0)-u(T)= 2.736-0.368 = 2.368。
1Y?z????z??1?z?1
=0.394z?20.394z?2=
?1?1?1?0.607z??1?z?
?0.633z?3?0.778z?4?0.866z?5?
由此可见被控对象中惯性环节的低通特性,使得控制器的这种振荡对系统输出的稳定性几乎没有影响,但会增加
执行机构的磨损。
4. 某工业加热炉通过飞升曲线实验法测得参数为:K=1.2,τ=30s,T1=320s,即可用带纯滞后的一阶惯性环节模型来描述。若采用零阶保持器,取采样周期T=6s,试用大林算法设计工业炉温控制系统的数字控制器的D(z),已知T?=120s。 解:
Ke??s1.2e?30s=,N??/T?30/6?5。 Go?s??T1s?1320s?1???1?e?sT1.2e?30s?1?5?1G?z??Z??1.2z?1?zZ???? ??s320s?1??s?320s?1?? =z?5
??1?z?1?1?e?z?1?z1?e????3/160?1?1?3/160?1z?1?e?=
?3/160?z?61?e?3/160z?1
e?30se??s=, ??s??T?s?1120s?1∵ Tτ < T1
∴ RA > 0,存在振铃现象。
???1?e?sTe?5Ts?1?5?1??z??Z??z?1?zZ???? ??s120s?1??s?120s?1??=
z?5??1?z?1?1?e?z?1?z1?e????1/20?1?1?1/20?1z?1?ez??=
?1/20?61?e?1/20?1z
∴D?z????z?1 ?G?z?1???z?
?1/20z?61?e?3/160z?11?e1?e?1/20z?1=
?1/20?1?3/160?6?1/20?1?1/20?6?1?e?z1?ez1?ez??1?e?z??=
2.624?1?e?3/160z?1??1?e?1/20z?1??1?e?1/20z?1??1?e?1/20?z?6???]
e?s5. 已知被控对象的传递函数为G?s??,采样周期
?2s?1??s?1?出现振铃现象?设等效闭环系统的时间常数T0=1s。
解:
① 广义对象G(z):
T=1s,试用大林算法设计D(z),判断是否会
1e?sG(z)?(1?z)Z[]
s(2s?1)(s?1)?1
?z?1(1?z?1)Z[1]
s(s?1)(2s?1)
114?z?1(1?z?1)Z[??]
ss?12s?1T?1szz2z?z?1(1?z?1)[??] ?1?1/2z?1z?ez?ezz2z?z?1(1?z?1)[??]
z?1z?0.368z?0.607z?1112?[??]
zz?1z?0.368z?0.607z?1112?[??]
zz?1z?0.368z?0.607
?z?11.761z?0.094
z(z?1)(z?0.368)(z?0.607)1.761z?0.094z(z?0.368)(z?0.607)1.761(z?0.053)z(z?0.368)(z?0.607)
?
?
② 取T0 = 1s,滞后1个采样周期。
e?s?(s)?,则
s?11e?s?(z)?(1?z)Z[]
ss?1?1
?z?1(1?z?1)Z[1]
s(s?1)
11?z?1(1?z?1)Z[?]
ss?1zz?z?1(1?z?1)[?]
z?1z?e?111?(1?z?1)[?]
z?1z?0.368
?z?10.632
z(z?1)(z?0.368)0.632
z(z?0.368)
? ③ 求D(z)。
D(z)??(z)
G(z)[1??(z)]??0.632z(z?0.368)(z?0.607)z(z?0.368) 2z(z?0.368)1.761z?0.094z?0.368z?0.6320.632(z?0.607)z(z?0.368) 21.761z?0.094z?0.368z?0.632?0.359(z?0.607)z(z?0.368)
z?0.053(z?1)(z?0.632)C(z)R(z)?(z)?,
G(z)G(z) ∵
U(z)?
∴ G(z) 零点和Φ(z)的极点是U(z)的极点。
考察G(z)和Φ(z),知,U(z)有位于左半单位圆内的极点z = -0.053 。所以,会产生振铃现象。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库大林算法在线全文阅读。
相关推荐: