(1)求m的值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v?v0?
12t?bt?c(b,c是常数)1252(t?30),v0是加速前的速度). 125第7页(共30页)
2017年浙江省舟山市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.﹣2的绝对值是( ) A.2
B.﹣2 C.
D.
【考点】15:绝对值.
【分析】根据负数的绝对值等于它的相反数解答. 【解答】解:﹣2的绝对值是2, 即|﹣2|=2. 故选:A.
2.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是( ) A.4
B.5
C.6
D.9
【考点】K6:三角形三边关系.
【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的. 【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9. 因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案. 4,5,9都不符合不等式5<x<9,只有6符合不等式, 故选:C.
3.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是( )
A.3,2 B.3,4 C.5,2 D.5,4 【考点】W7:方差;W1:算术平均数.
【分析】根据数据a,b,c的平均数为5可知(a+b+c)=5,据此可得出(a﹣2+b﹣2+c
第8页(共30页)
﹣2)的值;再由方差为4可得出数据a﹣2,b﹣2,c﹣2的方差. 【解答】解:∵数据a,b,c的平均数为5, ∴(a+b+c)=5,
∴(a﹣2+b﹣2+c﹣2)=(a+b+c)﹣2=5﹣2=3, ∴数据a﹣2,b﹣2,c﹣2的平均数是3; ∵数据a,b,c的方差为4,
∴ [(a﹣5)2+(b﹣5)2+(c﹣5)2]=4,
∴a﹣2,b﹣2,c﹣2的方差= [(a﹣2﹣3)+(b﹣2﹣3)+(c﹣﹣2﹣3)]= [(a﹣5)
2
2
2
2
+(b﹣5)+(c﹣5)]=4.
22
故选B.
4.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是( )
A.中 B.考 C.顺 D.利
【考点】I8:专题:正方体相对两个面上的文字.
【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “祝”与“考”是相对面, “你”与“顺”是相对面, “中”与“立”是相对面. 故选C.
5.红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是( )
第9页(共30页)
A.红红不是胜就是输,所以红红胜的概率为 B.红红胜或娜娜胜的概率相等 C.两人出相同手势的概率为
D.娜娜胜的概率和两人出相同手势的概率一样 【考点】X6:列表法与树状图法;O1:命题与定理. 【分析】利用列表法列举出所有的可能,进而分析得出答案.
【解答】解:红红和娜娜玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:
红红 娜娜 石头 剪刀 布 (石头,石头) (剪刀,石头) (布,石头) (石头,剪刀) (剪刀,剪刀) (布,剪刀) (石头,布) (剪刀,布) (布,布) 石头 剪刀 布 由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为, 红红不是胜就是输,所以红红胜的概率为,错误,故选项A符合题意, 故选项B,C,D不合题意; 故选:A.
6.若二元一次方程组A.1
B.3
C.
的解为
D.
第10页(共30页)
,则a﹣b=( )
【考点】97:二元一次方程组的解. 【分析】将两式相加即可求出a﹣b的值. 【解答】解:∵x+y=3,3x﹣5y=4, ∴两式相加可得:(x+y)+(3x﹣5y)=3+4, ∴4x﹣4y=7, ∴x﹣y=, ∵x=a,y=b, ∴a﹣b=x﹣y= 故选(D)
7.如图,在平面直角坐标系xOy中,已知点A(
,0),B(1,1).若平移点A到点C,
使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是( )
A.向左平移1个单位,再向下平移1个单位 B.向左平移C.向右平移
个单位,再向上平移1个单位
个单位,再向上平移1个单位
D.向右平移1个单位,再向上平移1个单位
【考点】L8:菱形的性质;Q3:坐标与图形变化﹣平移.
【分析】过点B作BH⊥OA,交OA于点H,利用勾股定理可求出OB的长,进而可得点A向左或向右平移的距离,由菱形的性质可知BC∥OA,所以可得向上或向下平移的距离,问题得解.
【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形, 过B作DH⊥x轴于H, ∵B(1,1), ∴OB=
=,
第11页(共30页)
∵A(∴C(1+
,0), ,1)
∴OA=OB,
∴则四边形OACB是菱形,
∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到, 故选D.
8.用配方法解方程x2+2x﹣1=0时,配方结果正确的是( ) A.(x+2)=2 B.(x+1)=2 C.(x+2)=3 D.(x+1)=3 【考点】A6:解一元二次方程﹣配方法.
【分析】把左边配成一个完全平方式,右边化为一个常数,判断出配方结果正确的是哪个即可.
【解答】解:∵x2+2x﹣1=0, ∴x+2x﹣1=0, ∴(x+1)=2. 故选:B.
9.一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为( )
2
2
2
2
2
2
A. B. C.1 D.2
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中2017年浙江省舟山市中考数学试卷(含答案解析版)(2)在线全文阅读。
相关推荐: