(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?
23.(11分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数
形式呢?请看以下示例: 例:将0.化为分数形式
由于0.=0.777?,设x=0.777?① 则10x=7.777?②
②﹣①得9x=7,解得x=,于是得0.=. 同理可得0.==,1.=1+0.=1+=
根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) 【基础训练】
(1)0.= ,5.= ; (2)将0.
化为分数形式,写出推导过程;
【能力提升】
(3)0.1= ,2.0
= ;
=2.01818?)
(注:0.1=0.315315?,2.0【探索发现】
(4)①试比较0.与1的大小:0. 1(填“>”、“<”或“=”) ②若已知0.8571=,则3.1428= . (注:0.857l=0.285714285714?)
24.(12分)如图1,抛物线C1:y=ax﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.
2
(1)求出抛物线C1的解析式,并写出点G的坐标;
(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点
为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:
(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的)
1.(3分)﹣的相反数是( ) A.﹣ B.
C.﹣2 D.2
【分析】根据只有符号不同的两个数互为相反数,可得答案. 【解答】解:﹣的相反数是, 故选:B.
【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.
2.(3分)如图是一个由4个相同正方体组成的立体图形,它的左视图是( )
A. B. C. D.
【分析】根据从左边看得到的图形是左视图,可得答案.
【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形, 故选:D.
【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
3.(3分)下列运算正确的是( ) A.a?a=a B.a÷a=1
C.(a﹣b)=a﹣ab+b D.(﹣a)=﹣a
【分析】根据同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方逐一计算可得. 【解答】解:A、a?a=a,此选项错误; B、a÷a=a,此选项错误;
C、(a﹣b)=a﹣2ab+b,此选项错误; D、(﹣a)=﹣a,此选项正确;
2
3
6
2
2
2
3
﹣3
6
2
3
5
2
2
2
2
3
6
2
3
6
3
﹣3
故选:D.
【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方的运算法则.
4.(3分)如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是( )
A.25° B.35° C.45° D.65°
【分析】过点C作CD∥a,再由平行线的性质即可得出结论. 【解答】解:如图,过点C作CD∥a,则∠1=∠ACD. ∵a∥b, ∴CD∥b, ∴∠2=∠DCB. ∵∠ACD+∠DCB=90°, ∴∠1+∠2=90°, 又∵∠1=65°, ∴∠2=25°. 故选:A.
【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.
5.(3分)某同学连续6次考试的数学成绩分别是85,97,93,79,85,95,则这组数据的众数和中位数分别为( )
A.85 和 89 B.85 和 86 C.89 和 85 D.89 和 86
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中湖北省随州市2018年中考数学真题试题Word版含解析(2)在线全文阅读。
相关推荐: