77范文网 - 专业文章范例文档资料分享平台

现代移动通信中的调制技术研究(5)

来源:网络收集 时间:2019-06-17 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

(3.25)

LPF输出为:

(3.26)

当(k为整数)时,

(3.27)

插入限幅器,去掉振幅的影响。上式中第一项为偶函数,不反映极性的变化,可作为直流分量,并将判决门限增加相应的值?,第二项作为判决依据。判决规则为 Y(t)> ? 判为“+1” Y(t)< ? 判为“-1”

式(2.27)中的第二项为

对应经差分编码后的; 对应于;

?

? (3.28)

则相应在发端,需要对原始数据进行差分编码。

二比特延迟差分检测的误码率特性优于相干解调的误码率特性;二比特延迟差分检测的误码性能优于一比特延迟差分检测的误码性能。

这样看来,使用2bit差分解调比使用1bit差分解调的效果好些,但是差分解调最后都要通过判决输出,有时使用2bit差分解调不好选取判决门限,门限值选得太大太小都容易误判,而1bit差分解调一般选取零为判决门限,误判机会小一些。由于一比特差分检测算法原理简单,软件编程时容易实现,故本次设计在GMSK信号的解调中采用的是一比特差分检测算法。

3.2.3 GMSK的功率谱密度 令一个数字调相信号表示如下:

(3-29)

其中,是一个含有信息的随机过程,也就是相位路径。为初始相位(分析中可以将其设为0)。功率谱分析方法较多,且各有其特点以及用途。主要方法大抵有以下几种:

(1)直接傅立叶变换法。通过直接推求截断信号的傅立叶变换获得其振幅谱。再运用符号统计的特征以及平稳随机过程的基本原理将其转化为功率谱。这是一种确定信号向随机信号谱分析过渡的直接而经典的方法。

21

(2)相关函数法。利用维纳-辛欣定理利用自相关函数的估计值得傅立叶变换来获得功率谱。

(3)转移概率法(信号流图法)。首先列出个符号的转移状态并计算出相应的转移概率矩阵,然后利用包含该转移概率的功率谱密度分析式直接计算其功率谱分布。

(4)其他近代普估计法。最大熵法,最大似然谱估计法,自回归谱估计法等。 上文介绍了直接法。该方法利用了带通信号Z(t)的截短形式直接求出Z(t)的双边功率谱度。GMSK信号的功率谱密度相同,随着BT常数的减小,旁瓣的衰落非常快。例如,当BT=0.5时,第一旁瓣比主瓣低20dB。这里我们再次指出,频谱的紧凑是一引入码间干扰,增加误码率为代价的。

在规定接收机所需要接受的已调波总功率的百分比的情况下,接收机带通滤波器所需的归一化带宽时间常数BT,就定义为已调波占用的带宽。表3-1显示当BT取不同值时,GMSK信号中包含给定百分比功率所占用的归一化带宽。

表3-1 GMSK信号占用的归一化带宽

BT 0.2 0.25 0.5 MSK 90% 0.52 0.57 0.69 0.78 99% 0.79 0.86 1.04 1.20 99.8% 0.99 1.09 1.33 2.76 99.99% 1.22 1.37 2.08 6.00 表3-1的物理意义十分清楚。当预调制滤波器的时间带宽常数BT以及已调波的总功率一定时,若要求接收机收到的功率越大,则其占用的带宽要求越宽,反之越窄;当接收机牵制前置检测滤波器的带宽BT一定时,发送端滤波器时间带宽常数BT越小,接收机越能够通过的已调波功率的百分比就越大。

矩形脉冲经过预调高斯低通滤波器的脉冲形成之后,脉冲在时间上延伸,每个码元的脉冲将延伸到相邻码元的时间间隔。这就会造成码间干扰,并导致接收机在检测一个码元时发生错误的概率增加。图3-12为时,第K个码元与相邻两个码元在时域上输出得分解图。图中三段曲线分别代表第K-1,K,K+1个码元的时域波形。这里,高斯低通滤波器的输出是第K个码元时间内三个脉冲相应波形的线性叠加。这就是码间干扰。

22

图3-12 高斯低通滤波器的时域分解(BT=0.3)

可是,由高斯低通滤波器的脉冲响应得知高斯滤波器的传递函数不满足奈奎斯特准则,因此我们不能利用奈奎斯特准则消除码间干扰。因此,在希望得到的射频带宽和由于码间干扰造成的误码性能的下降之间的折衷,是选择高斯滤波器时面临的问题。尽管我们不能完全消除码间干扰,但是后面的章节我们将深入地讨论在接受端如何利用等增益合并,判决反馈均衡(DFE)以及非冗余纠错技术来尽可能的减少码间干扰的负面效应。

3.3 四相相移键控(QPSK)

四相相移键控信号简称“QPSK”, 意为正交相移键控,是一种数字调制方式。它分为绝对相移和相对相移两种。由于绝对相移方式存在相位模糊问题,所以在实际中主要采用相对移相方式QDPSK。它具有一系列独特的优点,目前已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方。

3.3.1 QPSK的基本原理

在数字相位调制中,M个信号波形可表示为

(m=1,2,…,M,) (3.30)

g(t)是信号脉冲形状,(m=1,2,…,M)是载波的M个可能的相位,用于传送发送信息。这些信号波形具有相等的能量,即

(3.31)

而且这些信号波形可以表示为两个标准正交信号波形和的线性星座图合,即,式中

且二维向量为

23

(m=1,2,?,M) (3.32)

其中当M=4时就是本文要讨论的4PSK(QPSK),QPSK的载波相位有四种取值,每种取值代表两比特的信号。随着信号的改变,幅度恒定的载波信号的相位在四种取值间跳变。这四个相位的取值为间隔相等的值,比如,0,,每一个相位值对应于唯一的一对消息比特。有一种变形,称为-QPSK是通过在每一个符号间隔的载波相位中引入附加的相移来使符号同步变得容易些。

QPSK信号可以表示为:

i=1,2,3,4 (3.33)

式中为单位符号的信号能量,即时间内的信号能量;为载波角频率,为符号持续时间。 QPSK信号可以看成是对两个正交的载波进行多电平双边带调制后所得信号的叠加,因此可以用正交调制的方法得到QPSK信号。QPSK信号的星座如图3-13所示:

图3-13 QPSK信号星座图

MPSK调制中最常用的是4PSK又称QPSK。数字相位调制(PSK)是角度调制、恒定幅度数字调制的一种方式,通过改变发送波的相位来实现,除了其输入信号以及输出的相位受限制以外,PSK与传统的相位调制相似。对于经过相

调制的数字信号来说,载波信号的相位一般有(m=0,1,2,……M-1)。因此调制信号可用如下的式子表示: ,

(3.34)

其中:A是信号振幅;为发送端的滤波脉冲(一般为矩形脉冲),决定发送信号的频谱特征;T为信号持续时间;为每一个发送符号的能量();为载波的角频率。

3.3.2 QPSK的调制原理

四相相位键控(QPSK)也称之为正交PSK,其调制及解调原理如图3-14所示。从图(3-11)中可以看出:如果输入的二进制信息码流(假设+1V为逻辑1,-1V为逻辑0)串行进入比特分离器,产生2个码流以并行方式输出,分别被送入I(正交支路)通道及Q(同相支路)通道,又各自经过一个平衡调制器,与一个和参考振荡器同频的正交的载波()调制形成了四相相移键控信号即得到平衡调制器的输出信号后,经过一个带通滤波器,然后再进行信号叠加,可以得到已经调制的QPSK信号。

24

电平 产生 I(t) Acosπfct 载波发二进信息 串—并变换 生器 已调信号 90度移相 电平 产生 Q(t) Asinπfct

图3-14 QPSK调制原理

MPSK也可以采用其他方法实现调制。图3-15中给出QPSK的相位选择法调制器。在这种调制器中,载波发生器产生四种相位的载波,经逻辑选择电路,根据输入信息,每次选择其中一种作为输出,然后经带通滤波器滤除高频分量。显然这种方法比较适用于载频较高的场合,此时,带通滤波器可以做得很简单。

串/并变换 输入 逻辑选相电路 输出 带通滤波器 四相载波发生器

图3-15 QPSK的相位选择法调制器框图

分频 主振 ÷2 ÷2 带通 QPSK 信号 输入 信息 b1 串并 变换 b2 逻辑控制 ?2推动 ?推动 图3-16 QPSK的脉冲插入法调制器框图

25

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库现代移动通信中的调制技术研究(5)在线全文阅读。

现代移动通信中的调制技术研究(5).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/662808.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: