77范文网 - 专业文章范例文档资料分享平台

公务员行政能力测试典型数学运算例题详解(2)

来源:网络收集 时间:2019-03-27 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

6 / 35 7948720.doc TopSage.com

990/7余3,240/7余2 3+2=5

20. 某次数学竞赛共有10道选择题,评分办法是每一题答对一道得4分,答错一道扣1分,不答得0分.设这次竞赛最多有N种可能的成绩,则N应等于多少? 解析:从-10到40中只有 29 33 34 37 38 39

这6个数是无法得到的,所以答案是51-6=45

21. N是1,2,3,...1995,1996,1997,的最小公倍数,请回答 N等于多少个2与一个奇数的积?

解析:1到1997中1024=2^10,它所含的2的因数最多,所以最小公倍数中2的因数为10个,所以等于10个2与1个奇数的乘积。

22. 5个空瓶可以换1瓶汽水,某班同学喝了161瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买汽水多少瓶? 解析:大致上可以这样想:先买161瓶汽水,喝完以后用这161个空瓶还可以换回32瓶(161÷5=32?1)汽水,然后再把这32瓶汽水退掉,这样一算,就发现实际上只需要买161-32=129瓶汽水。可以检验一下:先买129瓶,喝完后用其中125个空瓶(还剩4个空瓶)去换25瓶汽水,喝完后用25个空瓶可以换5瓶汽水,再喝完后用5个空瓶去换1瓶汽水,最后用这个空瓶和最开始剩下的4个空瓶去再换一瓶汽水,这样总共喝了:129+25+5+1+1=161瓶汽水.

23. 有两个班的小学生要到少年宫参加活动,但只有一辆车接送。第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫。学生步行速度为每小时4公里,载学生时车速每小时40公里,空车是50公里/小时,学生步行速度是4公里/小时,要使两个班的学生同时到达少年宫,第一班的 学生步行了全程的几分之几? A.1/7 B.1/6 C.3/4 D.2/5 分析:(A/4)=(B/60)+{(A+5B/6)/40}

A为第一班学生走的,B为坐车走的距离

思路是:第一班学生走的距离的时间=空车返回碰到学生的时间+车到地点的时间

24. 甲乙两车同时从A.B两地相向而行,在距B地54千米处相遇,他们各自到达对方车站后立即返回,在距A地42千米处相遇。A.B两地相距多少千米?(提示:相遇时他们行了3个全程)

解析: 设A.B两地相距X千米

两车同时从A.B两地相向而行,在距B地54千米处相遇时, 他们的时间相等, 他们的速度相除为:54/(X—54)

大家网,大家的!

http://www.topsage.com

更多精品在大家!

TopSage.com 7948720.doc

7 / 35

在距A地42千米处相遇时: 他们的速度相除为(X—54+42)/(54+X—42) 他们的速度没有变法, 他们的速度相除值为定量, 所以: 54/(X—54)= (X—54+42)/(54+X—42)

方程式两侧同乘X—54, 54=(X—54) ×(X—12)/(X+12) 方程式两侧同乘(X+12), 54(X+12)= (X—54) (X—12) 54X+54×12=X2—54X—12X+54×12 X2—66X—54X=0 X(X—120)=0

X=0(不合题意) 或者说: (X—120)=0 X=120 8

25. 地球陆地总面积相当于海洋总面积的41%,北半球的陆地面积相当于其海洋面积的65%,那么,南半球的陆地面积相当于其海洋面积的______%(精确到个位数). 解析:把北半球和南半球的表面积都看做1,则地球上陆地总面积为:

(1+1) ×(41/(1+41))=0.5816,北半球陆地面积为:1×65/(1+65)=0.3940, 所以南半球陆地有:0.5816-0.3940=0.1876, 所以南半球陆地占海洋的0.1876/(1-0.1876) ×100%=23%.

26. 一个人上楼,他有两种走法,走一阶或走两阶,问他上30阶楼梯有几种走法?

解析:设上n级楼梯的走法为a(n),则a(n)的值等于是a(n-1)的值与a(n-2)的值的和,比如上5级楼梯的走法是4级楼梯走法和3级楼梯走法的和,因为走3到级时再走一次(2级)就到5级了,同样,走到4级时再走一级也到5级了。从而a(n)=a(n-1)+a(n-2),是斐波纳契数列。 显然1阶楼梯1种走法,a(1)=1,2阶楼梯2种走法,a(2)=2,所以a(3)=1+2=3,a(4)=2+3=5,a(5)=3+5=8,...,a(30)=1346269. 所以1346269即为所求。

27. 有一批正方形的砖,排成一个大的正方形,余下32块;如果将它改排成每边长比原来多一块砖的正方形,就要差49块。问这批砖原有多少块?

解析:两个正方形用的砖数相差: 32+49=81块, 相邻平方数的差构成1,3,5,7,...的等差数列,(81-1)/2=40, 所以说明41^2-40^2=81,所以这些砖有40^2+32=1632块

28. 奥运五环标志。这五个环相交成9部分,设A-I,请将数字1—9分别填入这9个部分中,使得这五个环内的数字之和恰好构成5个连续的自然数。那么这5个连续自然数的和的最大值为多少。

A.65 B.75 C.70 D.102 分析:(方法一)题为5个连续自然数,可得出

A+B+1=B+C+D B+C+D+1=D+E+F等.所以求五个连续自然数的和为 5(A+B)+10

H+I最大值为8+9=17,所以A+B<17-4,A+B<13 5(A+B)+10<75

更多精品在大家!

http://www.topsage.com

大家网,大家的!

8 / 35 7948720.doc TopSage.com

满足5个连续自然数的条件A+B>5+6 5(A+B)+10>65 所以得出答案为70

(方法二)

29. 一水库原有存水量一定,河水每天均匀入库。5台抽水机连续20天可抽干,6台同样的抽水机连续15天可抽干。若要求6天抽干,需要多少台同样的抽水机? 解:水库原有的水与20天流入水可供多少台抽水机抽1天? 20×5=100(台)

水库原有水与15天流入的水可供多少台抽水机抽1天? 6×15=90(台)

每天流入的水可供多少台抽水机抽1天? (100-90)÷(20-15)=2(台) 原有的水可供多少台抽水机抽1天? 100-20×2=60(台)

若6天抽完,共需抽水机多少台? 60÷6+2=12(台)

30. 甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。求A、B两地间的路程。

解析:甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。两车同时出发同时停止,共行了3个全程。说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:

(24O+6O)÷2=150(千米)

可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

31. 一名个体运输户承包运输20000只玻璃管,每运输100只可得运费0.80元,如果损坏一只不但不给运费还要赔款0.20元,这位个体运输户共得运输费总数的97.4%,求他共损坏了几只玻璃管?

A.16 B.22 C.18 D.20 分析:20000/100×0.80×97.4%=155.84 0.8×(20000-X/100)-0.2X=155.84 解得X=20

大家网,大家的!

http://www.topsage.com

更多精品在大家!

TopSage.com 7948720.doc

9 / 35

32. 解析:观察可知,繁分数中共有12个分母数字较大的分数,按常规的通分方法显然行不通。若取最大值和最小值来讨论算式的取值范围,也较

找出算式的整数部分。

因此,S的整数部分是165。

33. 假设五个相异正整数的平均数为15,中位数为18,则此五个正整数中的最大数的最大值可能为(C) A 24 B 32 C 35 D 40

分析(一):因是最大值,故其他数应尽可能小,小的两个数可选1、2,比18大的一个选19,那么用15*5-1-2-18-19可得出这个数为35 分析(二)由题目可知,小于18的2个数字是1和2。所以得到大于18的2个数字和为 75 -18 - 2 - 1 = 54。要求最大可能值,所以另一数是 19 ,最后 最大值 = 54 - 19 = 35 。

34. 1000个体积为1立方厘米的小立方体,合在一起,成为一个边长为10厘米的大立方体,表面涂油漆后,再分开为原来的小立方体,这些小立方体中至少有一面11被油漆涂过的数目是多少个? 解析:最简单的想法就是直接算没有一面被涂的,那就是包含在里面的8×8×8的立方体。个数为:512所以至少涂了一面的为:1000-512=488 答案:488

35. 一种商品,按期望获得50%的利润来定价。结果只销售掉70%商品,为尽早销掉剩下的商品,商店决定按定价打折出售。这样获得的全部利润,是原来所期望利润的82%。问打了几折?

分析:设成本是? 打折率为A

?x0.5x0.7+?x1.5xAx0.3-?X1x0.3=?x0.5x0.82 0.35+0.45A-0.3=0.41 0.45a=0.36 a=0.8 应该是八折

36. 有一条环形公路,周长为2km,甲,乙,丙3人从同一地点同时出发。每人环行2周。现有2辆自行车,乙和丙骑自行车出发,甲步行出发,中途乙和丙下车步行,把自行车留给其他人骑。已知甲步行的速度是每小时5千米,乙和丙步行的速度是每小时4千米,三人骑车的速度都是每小时20千米。请你设计一种走法,使三个人两辆车同时到达终点。那么环行两周最少要用多少分钟

更多精品在大家!

http://www.topsage.com

大家网,大家的!

10 / 35 7948720.doc TopSage.com

解析:设甲步行x千米,则骑车(4-x)千米,由于乙、丙速度情况均一样,要同时到达,所以乙、丙步行的路程应该一样,设为y千米,则他们骑车均为(4-y)千米。由于三人同时到达,所以用的总之间相等,所以:x/5+(4-x)/20=y/4+(4-y)/20, 得到:y=3x/4. 可以把两个环路看成长为4千米的直线段来考虑,下面设计一种走法:把全程分为三段,分界点为B、C,乙在B点下车,将车放在原地,然后继续走,甲走到B点后骑上乙的车一直到终点,丙骑车到B后面的C点处,下车后步行到终点,乙走到C后骑着丙的车到终点,其中的等量关系可以画线段图解决,我的图贴不上来,所以大家自己画图分析。 设起点为A,终点为D,则可以通过画图找到等量关系:AB=x,BD=4-x,CD=y=3x/4,AC=4-3x/4,BC=y=3x/4,所以有:BD=BC+CD, 即:4-x=3x/4+3x/4, 解得:x=1.6, y=3x/4=1.2. 从而B、C的位置就确定了,时间是:1.6/5+(4-1.6)/20=0.44小时=26分24秒.

37. 用绳子量桥高,在桥上将绳子4折垂至水面,余3米,把绳子3折后,余8米,求桥高是多少米?

分析 :4x+3x4=3x+8x3 x=12

38. 小王有1元、2元、5元、10元面值的邮票,他寄12封信,每封信邮票金额不同,每封信邮票张数要尽可能少,共贴了80元邮票,问:共贴多少张? 解析:贴1张的有4封 贴2张的有 1+2 1+5 2+5 2+2 2+10

贴3张的有 1+2+5 2+2+5 1+2+10

所以共23枚

技巧是要求数额不同,则考虑1,2,3................10,各一封,一共是55元,还有25元,可以拆为14,11各一封,或者12,13各1封,但无论如何拆都要5枚

39. 一只木箱内有白色乒乓球和黄色乒乓球若干个。小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个;如果换一种取法:每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。问原来木箱内共有乒乓球多少个? A.246个 B.258个 C.264个 D.272个

解析:三个步骤: 3m-3n=24 m-n=8 (5×8+8)/2=24 m=24 10×24+24=264

40. 有甲乙两堆煤,如果甲堆运往乙堆10吨,那么甲堆就会比乙堆少5吨.现在两堆都运走相

大家网,大家的!

http://www.topsage.com

更多精品在大家!

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库公务员行政能力测试典型数学运算例题详解(2)在线全文阅读。

公务员行政能力测试典型数学运算例题详解(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/546473.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: