??,k??],k?Z 36???7?(Ⅱ)因为x?[0,],所以2x??[,],
26661?所以??sin(2x?)?1
26?1所以函数f(x)在[0,]上的取值范围是[?,1]
22所以函数f(x)的单调递增区间为[k??10、(乐山市第一中学2014届高三10月月考)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=?,∠ADE=?。
(1)该小组已经测得一组?、?的值,tan?=1.24,tan?=1.20,请据此算出H的值; (2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使?与?之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,?-?最大?
解:(1)由
HHH,同理:AB?,?tan?得AD?tan?ADtan?BD?h。 tan?∵
AD
-
AB=DB
,
故
得
HHh??tan?tan?tan?,解得:
H?htan?4?1.24??124。因此,算出的电视塔的高度H是124m。
tan??tan?1.24?1.20HHhH?h, , tan????dADDBdHH?h?tan??tan?hdhdd tan(???)???2?HH?hH(H?h)1?tan??tan?1??d?H(H?h)d?dddH(H?h)∵d?(当且仅当d?H(H?h)?125?121?555时,?2H(H?h),d(2)由题设知d?AB,得tan??取等号),∴当d?555时,tan(???)最大。
∵0?????故所求的d是555m。
?2,则0??????2,∴当d?555时,?-?最大。
11、(泸州市2014届高三第一次教学质量诊断)
在△ABC中,角A、B、C的对边分别为a、b、c,设S为△ABC的面积,满足
4S?3(a2?b2?c2) .
(Ⅰ)求角C的大小;
????????tanA2c(Ⅱ)若1?,且AB?BC??8,求c的值. ?tanBb1解:(Ⅰ) S?absinC,且a2?b2?c2?2abcosC. ····································································· ···· 2分
2因为4S?3(a2?b2?c2),
1所以4?absinC?23abcosC,··········································································· ···· 3分
2所以tanC?3,···································································································· ···· 4分 因为0?C??, 所以C?(Ⅱ)由1?π; ·········································································································· ···· 6分 3tanA2c得: ?tanBbcosAsinB?sinAcosB2c, ·············································································· ···· 7分 ?cosAsinBbsinC2c即······························································································ ···· 8分 ?, ·cosAsinBb1又由正弦定理得cosA?, ·················································································· ···· 9分
2∴A?60?,
∴△ABC是等边三角形, ······················································································ ·· 10分 ????????∴AB?BC?c?c?cos120???8, ············································································ ·· 11分 所以c?4. ··············································································································· ·· 12分
12、(绵阳市高中2014届高三11月第一次诊断性考试)
已知函数
(I)求函数f(x)的定义域及最大值;
(II)求使f(x)≥0成立的x的取值集合。 解:(Ⅰ) cosx≠0知x≠kπ,k∈Z,
即函数f (x)的定义域为{x|x∈R,且x≠kπ,k∈Z}.………………………3分 又∵ f(x)?2sinxcosx(sinx?cosx)1?cos2x?2sin2x?2sinxcosx?2??sin2x
cosx2?1?(sin2x?cos2x) ?1?2sin(2x??4),
∴ f(x)max?1?2. ……………………………………………………………8分
ππ2(II)由题意得1?2sin(2x?)≥0,即sin(2x?)≤,
2443ππ9π≤2x?≤2kπ?,k∈Z,
444π整理得kπ?≤x≤kπ?π,k∈Z.
4结合x≠kπ,k∈Z知满足f(x)≥0的x的取值集合为
解得2kπ?{x|kπ?π≤x km)安通驾校拟围着一座山修建一条环形训练道路OASBCD,道路的平面图如图所示(单位:,已知曲线ASB为函数 的图象,且最高点为 S(1,2),折线段AOD为固定线路,其中AO=3,OD=4,折线段BCD为可变线路,但为保证驾驶安全,限定∠BCD=120°。 (I)求 的值; (II)应如何设计,才能使折线段道路BCD最长? 解:(I)由已知A=2, 且有2sin(??0??)?3,即sin??由|?|< 3, 2??得??. 32又∵ 最高点为(1,2), ∴ 2sin(??. 63??∴ y?2sin(x?).…………………………………………………………6分 63ππ(II)∵ B点的横坐标为3,代入函数解析式得yB?2sin(?3?)=1, 63∴ BD?12?(4?3)2?2.…………………………………………………8分 在△BCD中,设∠CBD=θ,则∠BDC=180o-120o-θ=60o-θ. 由正弦定理有 BDCDBC??, sin120?sin?sin(60???)? 解得??)?2,?∴ CD?2626sin?,BC?sin(60???), …………………………………9分 33∴ BC?CD?26[sin??sin(60???)] 3??2631[sin??cos??sin?] 32226?sin(??). 33∴ 当且仅当???6时,折线段BCD最长,最长为 26千米.…………12分 3 14、(什邡中学高中2014届高三上学期第二次月考) 已知函数f(x)?3sin?xcos?x?cos2?x的周期为2?,其中??0. (Ⅰ)求?的值及函数f(x)的单调递增区间; (Ⅱ)在?ABC中,设内角A、B、C所对边的长分别为a、b、c,若a?3,c?2,3f(A)=,求b的值. 2 15、(资阳市2014届高三上学期第一次诊断性考试) 已知函数f(x)?2sin(x?)cosx?sinxcosx?3sin2x(x?R). 3(Ⅰ)求f(x)在[0,?]内的单调递增区间; (Ⅱ)在?ABC中,B为锐角,且f(B)?3,AC?43,D是BC边上一点,AB?AD,试求 ?AD?DC的最大值. 13【解】(Ⅰ)f(x)?2(sinx?cosx)cosx?sinxcosx?3sin2x 22······························· 2分 ?2sinxcosx?3(cos2x?sin2x)?sin2x?3cos2x?2sin(2x?). ·3????5?由??2k??2x???2k?,得??k??x?························· 3分 ?k?(k?Z). · 2321212?5?5?取k?0,得??x?,又x?[0,?],则x?[0,]; ·············································· 4分 12121211?17?11?取k?1,得,又x?[0,?],则x?[············································· 5分 ?x?,?]. · 1212125?11?∴f(x)在[0,?]上的单调递增区间是[0,],[·············································· 6分 ,?]. · 1212?3???2?(Ⅱ)由f(B)?3得sin(2B?)?.又0?B?,则??2B??,从而 322333. ······································································································· 8分 333由AB?AD知?ABD是正三角形,AB?AD?BD,∴AD?DC?BD?DC?BC, 2B?????,∴B??在?ABC中,由正弦定理,得43sin?3?BC,即BC?8sin?BAC. sin?BAC32?,∴?sin?BAC?1,知43?BC?8. 23∵D是BC边上一点,∴当?BAC??3??BAC??2,C??6时,AD?CD取得最大值8. ···························································· 12分 【另】在?ACD中,由正弦定理,得 ADDC43,∴AD?8sinC, ??sinCsin(??C)sin2?3331??cosC?sinC) CD?8sin(?C),则AD?DC?8sinC?8sin(?C)?8(sinC?223331?2????2?,∴0?C?,?C??, ?8(cosC?sinC)?8sin(C?).∵?ADC?22333333[当C? ?3??2,即C??6时,AD?DC取得最大值8. ······················································· 12分 [ 百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库四川省各地2014届高三最新模拟试题分类汇编7:三角函数(3)在线全文阅读。
相关推荐: