77范文网 - 专业文章范例文档资料分享平台

2018年浙江省金华市中考数学试卷(5)

来源:网络收集 时间:2018-12-25 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

21.(8分)(2018?浙江)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B. (1)求证:AD是⊙O的切线.

(2)若BC=8,tanB=,求⊙O的半径.

【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;

(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果. 【解答】(1)证明:连接OD, ∵OB=OD, ∴∠3=∠B, ∵∠B=∠1, ∴∠1=∠3,

在Rt△ACD中,∠1+∠2=90°, ∴∠4=180°﹣(∠2+∠3)=90°, ∴OD⊥AD,

则AD为圆O的切线;

第21页(共32页)

(2)设圆O的半径为r, 在Rt△ABC中,AC=BCtanB=4, 根据勾股定理得:AB=∴OA=4

﹣r,

=4

在Rt△ACD中,tan∠1=tanB=, ∴CD=ACtan∠1=2,

根据勾股定理得:AD2=AC2+CD2=16+4=20, 在Rt△ADO中,OA2=OD2+AD2,即(4解得:r=

﹣r)2=r2+20,

【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.

22.(10分)(2018?浙江)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4. (1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

第22页(共32页)

【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;

(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;

(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得. 【解答】解:(1)设抛物线解析式为y=ax(x﹣10), ∵当t=2时,AD=4, ∴点D的坐标为(2,4),

∴将点D坐标代入解析式得﹣16a=4, 解得:a=﹣,

抛物线的函数表达式为y=﹣x2+x;

(2)由抛物线的对称性得BE=OA=t, ∴AB=10﹣2t,

当x=t时,AD=﹣t2+t, ∴矩形ABCD的周长=2(AB+AD) =2[(10﹣2t)+(﹣t2+t)] =﹣t2+t+20 =﹣(t﹣1)2+,

∵﹣<0,

∴当t=1时,矩形ABCD的周长有最大值,最大值为

(3)如图,

第23页(共32页)

当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4), ∴矩形ABCD对角线的交点P的坐标为(5,2),

当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;

当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;

∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分, 当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积, ∵AB∥CD,

∴线段OD平移后得到的线段GH, ∴线段OD的中点Q平移后的对应点是P, 在△OBD中,PQ是中位线, ∴PQ=OB=4,

所以抛物线向右平移的距离是4个单位.

【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.

23.(10分)(2018?浙江)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4. (1)当m=4,n=20时.

①若点P的纵坐标为2,求直线AB的函数表达式.

②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.

第24页(共32页)

(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论; ②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论; (2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D(4,8﹣),即可得出结论. 【解答】解:(1)①如图1,∵m=4, ∴反比例函数为y=, 当x=4时,y=1, ∴B(4,1), 当y=2时, ∴2=, ∴x=2, ∴A(2,2),

设直线AB的解析式为y=kx+b, ∴∴

, ,

∴直线AB的解析式为y=﹣x+3;

②四边形ABCD是菱形,

第25页(共32页)

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2018年浙江省金华市中考数学试卷(5)在线全文阅读。

2018年浙江省金华市中考数学试卷(5).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/389788.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: