教学方法
采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识. 教学过程
一、动手操作,导入课题
1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下, 思考得到的图形有何特点? 2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下, 思考得到的图形有何特点? 【学生活动】动手操作、用脑思考、与同伴讨论,得出结论. 【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.
学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.
【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.
概念:能够完全重合的两个三角形叫做全等三角形.
【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?
【学生活动】动手操作,实践感知,得出结论:两个三角形全等.
【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.
【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点? 【交流讨论】通过同桌交流,实验得出下面结论:
1.任意放置时,并不一定完全重合, 只有当把相同的角旋转到一起时才能完全重合. 2.这时它们的三个顶点、三条边和三个内角分别重合了.
3.完全重合说明三条边对应相等,三个内角对应相等, 对应顶点在相对应的位置. 【教师活动】根据学生交流的情况,给予补充和语言上的规范.
1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点, 重合的边叫做对应边,重合的角叫做对应角.
2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上, 如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点, 记作△ABC≌△DBC.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库新人教版数学八年级上册教案(全册整理版)(13)在线全文阅读。
相关推荐: