在西方文明中,数学一直是一种主要的文化力量。几乎每个人都知道,数学在工程设计中具有极其重要的实用价值。但是却很少有人懂得数学在科学推理中的重要性,以及它在重要的物理科学理论中所起的核心作用。至于数学决定了大部分哲学思想的内容和研究方法,摧毁和构建了诸多宗教教义,为政治学说和经济理论提供了依据,塑造了众多流派的绘画、音乐、建筑和文学风格,创立了逻辑学,而且为我们必须回答的人和宇宙的基本问题提供了最好的答案,这些就更加鲜为人知了。作为理性精神的化身,数学已经渗透到以前由权威、习惯、风俗所统治的领域,而且取代它们成为思想和行动的指南。最为重要的是,作为一种宝贵的、无可比拟的人类成就,数学在使人赏心悦目和提供审美价值方面,至少可与其他任何一种文化门类媲美。克莱因的眼光是深邃的,他敏锐地把握住“数学是西方文化中的一种主要的文化力量”!事实上,正是这种力量孕育了希腊的理性精神,构建了缜密思维的逻辑体系,催生了文艺复兴的人文主义,从而迎来从哥白尼到牛顿科学革命的新的曙光,并把西方文明推向了近代科技发展的快车道。所以,克莱因在书中着重考察了数学如何影响了直到20世纪的人类生活和思想。全书按照历史的顺序对数学思想进行考察,涉及的内容从古巴比伦、古埃及,到希腊数学精神的诞生,从文艺复兴时期数学与艺术的关系,一直到现代的相对论。
全是精心收集的资料,值得下载
对于我们学生来说,理解数学不一定非要去啃大量数学书。事实上,就算读完了大学数学系四年的课程,也未必能够了解到数学与文化的关系。因为,“千锤百炼”的数学教科书早已割断了数学与历史、数学与文化的血脉联系。文化不是外在附属品。数学文化也不是简单意义上的“数学十文化”。在关注数学历史性和数学美的同时,我们更应该对数学文化有一种更为家常的朴素理解:文化者,以文化人也。数学真正的文化要义在于,它可以最大限度地张扬数学思考的魅力,并改变一个人思考的方式、方法、视角。数学学习一旦使学生感受到了思维的乐趣,使学生领悟了数学知识的丰富、数学方法的精巧、数学思想的博大、数学思考的美妙,那么,数学的文化价值必显露无遗。从这一意义上讲,数学文化又怎会仅属于“圆”和“轴对称图形”?任何数学课堂.我们都可以触摸到数学文化的脉搏,因为,拥有思考,便拥有了数学的文化力量。
细细想来,数学不只是知识和方法的简单汇聚,它应该是一个开放的文化体系,是人类智慧和创造力的结晶。它在给予我们知识与方法的同时,更以一种文化的姿态改变人类的思考品质,拓展人类的视野,丰富人类的精神世界,增进人的本质力量。数学的文化特征不仅仅只在于数学的历史性和美学价值,凝聚在数学之中的美妙绝伦的数学思维方法、探索不止的数学精神、求真臻善达美的数学品格,对于一个 人全面和谐的发展,都具有极为重要的意义。可以说,数学是“真”、“善”、“美”的完美集合!因而,我们在承认和弘扬数学工具价值的同时,更应该看到它的文化价值,并借助日常的数学教育实践,使其外化为一种现实的数学影响,努力彰显数学的文化品性,真正使数学学习成为学生获得知识、形成方法、感悟价值、提升精神的生命历程。
仔细阅读《数学与文化》这篇文章,就可以让我们更好地理解数学所蕴含的文化,发现数学之美,从而爱上数学.
全是精心收集的资料,值得下载
三角函数历史
起源
历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用.
(一)马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽. 自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源.
(二)早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义.
1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰²贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx. 当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”.
8世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延.
(三)函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地限制了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W²威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说医药卫生无私奉献校本课程目录(8)在线全文阅读。
相关推荐: