2.5 BP神经网络结构
BP(Back Propagation)神经网络是一个具有三层或者三层以上的阶层神经网络,上下层之间的各种神经元实行权连接,而各层之间神经元无连接。最基本的BP神经网络是三层前馈网络,即输入层、隐含层和输出层。BP网络的结构如图2-3所示。
当一对学习样本提供给网络后,神经元的激活值从输入层经各中间层向输出层传播,在输出层的各神经元获得网络的输入响应。接下来,按减小目标输出与实际输出之间误差的方向,从输出层反向经过各中间层回到输入层,从而逐层修正各连接权值,这种算法称为“误差逆传播算法”,即BP算法。随着这种误差逆向的传播修正不断进行,网络对输入模式响应的正确率也不断上升[10]。
图2-3 BP网络结构
BP算法属于δ算法,是一种监督式(有导师)的学习算法。其基本思想是利用最小二乘法,即LMS算法,采用梯度搜索技术,以起始网络的实际输出值与期望输出值之间的误差平方和为最小。
对于q个输入学习样本:p1,p2,,pq,已知与其对应的输出样本:
,Aq,与目标矢量
,q)与期望Ti(i 1,2,,q)T1,T2,T1,T2,,Tq,学习的目的是用网络的实际输出A1,A2,,Tq之间的误差来修改其权值,使Ai(i 1,2,
尽可能地接近;即:使网络输出层的误差平方和达到最小。它是通过连续不断地在相对于误差函数斜率下降的方向上计算网络权值和偏差的变化而逐渐拟合目标的。每一次权值和偏差的变化都与网络误差的影响成正比,并以反方向传播的
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库基于BP神经网络的函数拟合算法研究(12)在线全文阅读。
相关推荐: