~40inagreementwithaccelerationmea-surementsin[10].
10
L
q
D10
10
DL
10
FIG.5:ESSplotsofthestructurefunctionvariation(indou-blelogcoordinates).Thesolidcurvesarebestlinear tswith
slopesequaltoξL
q=0.56±0.01,1.34±0.02,1.56±0.06,1.8±0.2forp=1,3,4,5fromtoptobottom.Coordinatesinarbitraryunits.
Moregenerally,onecanchoosetodescribetheevolu-tionofthePDFsbythebehavioroftheirmoments(or
‘structurefunctions’)DL
changeofq(τ)= |δτv|q .Indeed,acon-sequenceoftheshapeofthePDFswithscaleisthattheirmoments,asthe atnessfactorabove,varywithscale.ClassicallyintheEulerianpicture,oneex-pectsscalingintheinertialrange,DE
q(r)∝rζq,atleastinthelimitofverylargeReynoldsnumbers.Atthe -niteReynoldsnumberwheremostexperimentsaremade,thelackofatrueinertialrangeisusuallycompensatedbystudyingtherelativescalingofthestructurefunc-tions–theESSansatz[16].Weusethesecondorderstructurefunctionasareference.Indeedthedimensional
estimationofDL2(asthatofDE
3)dependslinearlyontheincrementandonthedissipation.Fig.5showsthat,asintheEulerianframe,arelativescalingisobservedfortheLagrangianstructurefunctionsoforders1to5,DLq(τ)∝DL2(τ)ξq.Weobservethattherelativeexpo-nentsfollowasequencecloseto,butmoreintermittentthanthecorrespondingEulerianquantity.Indeed,we
obtain:ξLL
L/ξLξ1/ξ3=0.42,ξ3=0.75,ξL/ξLL3=1.17,5
/ξL
2
43=1.28tobecomparedtothecommonlyac-4
ceptedEulerianvalues[17]ξEξ1/ξE3=0.36,ξE2/ξE
3=0.70,E4/ξE3=1.28,ξE5/ξE
3=1.53.
Inconclusion,usinganewexperimentaltechnique,wehaveobtainedaLagrangianvelocitymeasurementthatcoverstheinertialrangeofscales.OurresultsareconsistentwithKolmogorov-likedimensionalpredictionsforsecondorderstatisticalquantities.Athigherorders,theobservedintermittencyisverystrong.HowtheLagrangianintermittencyisrelatedtothestatisticalpropertiesoftheenergytransfersisanopenquestion.Fromadynamicalpointofview,theNavier-StokesequationinLagrangiancoordinatescouldbemodeledusingstochasticequations.WorkiscurrentlyunderwaytocomparethedynamicsoftheLagrangianvelocitytopredictionsofLangevin-likemodels.
acknowledgements:WethankBernardCastaingforinterestingdiscussionsandVermonCorporationforthedesignoftheultrasonictransducers.Thisworkissup-portedbygrantACINo.2226fromtheFrenchMinist`eredelaRecherche.
[1]PopeS.B.,Annu.Rev.FluidMech.,26,23,(1994).
[2]VirantM.,DracosT.,Meas.Sci.Technol.,8,1539,
(1997).
[3]SatoY.,YamamotoK.,J.FluidMech.,175,183,(1987).[4]YeungP.K.,PopeS.B.,J.FluidMech.,207,531,(1989).[5]LienR-C.,D’AsaroE.A.,DairikiG.T.,J.Fluid.Mech.,
362,177,(1998).
[6]YeungP.K.,J.FluidMech.,427,241,(2001).[7]HannaS.R.,J.Appl.Meteorol.,20,242,(1981).[8]SawfordB.L.,Phys.Fluids,A3,1577,(1991).
[9]VothG.A.,SatyanarayanK.,BodenschatzE.,Phys.Flu-ids,10,2268,(1998).
[10]LaPortaA.,VothG.A.,CrawfordA.,AlexenderJ.,Bo-denschatzE.,Nature,409,1017,(2001).
[11]MordantN.,MichelO.,PintonJ.-F.,submittedtoJASA,
(2000)andArXiv:physics/0103083.[12]MordantN.,PintonJ.-F.,Chill`aF.,J.Phys.IIFrance,
7,1729-1742,(1997).[13]Mal´ecotY.PhDThesis,Universit´edeGrenoble,(1998).[14]DuS.,SawfordB.L.,WilsonJ.D.,WilsonD.J.,Phys.
Fluids,7,3083,(1995).
[15]AnselmetF.,GagneY.,Hop ngerE.J.,AntoniaR.A.J.
FluidMech.,140,63,(1984).
[16]BenziR.,CilibertoS.,BaudetC.,Ruiz-ChavarriaG.,
TripiccioneC.,Europhys.Lett,24,275,(1993).[17]ArneodoA.etal.,Europhys.Lett,34,411,(1996).
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说高考高中Measurement of Lagrangian velocity in fully developed turbul(3)在线全文阅读。
相关推荐: