从表5中的R2和调整后的R2的值可以看出构建的回归方程拟合度较好。从表6的方差分析表中的F值及其的显著性Sig.的概率值小于0.001,说明多个自变量和因变量之间存在线性相关关系。将表7中的回归系数代入式(3)中,可得到海南省卫生人员总量预测模型为:
y1=59841.857+5995.327F1+4847.101F2(4)
将式(1)和式(2)代入式(4),可得,
y1=59841.857+5995.327(0.916X17+0.814X3+0.811X4+0.808X15+0.795X10+0.781X9+0.770X16+0.728X13+0.719X12+0.716X11+0.709X5)+4847.101(0.915X20+0.757X18+0.726X2+0.718X1)(5)
根据上述得出的海南省卫生人员总量预测模型,将海南省2009—2015年的各项数据代入式(4)中,相关数据见表8。
由表8可看出回归模型的预测值与实际值比较一致,绝对误差均小于3%,除了2012年,其他年份的绝对误差均小于1.3%。根据表8,将实际值和预测值,得到更直观的图形表示,见图3。从图3可以直观地看出海南省卫生人员总量的预测值的变化趋势基本反映了实际值的变化趋势。由此判断,本文构建的回归预测模型用来预测海南省卫生人员总量的预测值偏差率较低,可靠度比较高。
同理,可用相同的回归模型预测方法对目标变量海南省卫生技术人员y2、海南省执业(助理)医师人数y3、海南省执业医师人数y4、海南省注册护士人数y5、海南省执业药师人数y6、海南省大健康产业管理人员总数y7进行预测,见表9。
由表9的海南省大健康产业各类卫生技术人员以及管理人员总数的实际值与预测值的比较表可以得知,本文选取的大健康产业人才需求预测指标体系相对比较合理,能够通用与不同类型人才需求的预测,且各类人员总数的绝对误差均小于5.3%,大多数低于3%,且都集中于2012年这一相对较异常的年份。通过观察可以发现在各项指标数据整体上扬时,尤其是卫生和社会人员的平均工资于2012年还出现较大幅度增长的同时,全省执业(助理)医师人数和执业医师人数反而较2011年出现小幅减少的情况,导致这一年的绝对误差相对较大。而在此之前的2011年并没有出现重大的卫生人力政策的冲击和经济大环境的明显恶化,而执业医师资格考试的录取分数线和通过率并没有明显的变化,因此,不排除因各地薪酬增加产生人才流动的可能性。综上所述,可以发现本文构建的多元回归预测模型拟合度较高,预测精度较好,可靠性较强。
3.3结合趋势外推法进行未来预测
由于多元回归预测模型具有较好的解释能力,但是解释变量的未来值现实中较难取得,因此需要靠趋势外推法,将所有影响因素都全部归结于时间这一变量,假定事物发展过程中没有跳跃的非线性变化,事物发展的因素也影响着事物未来的发展,其条件不变或者变化不大。根据对人才需求预测指标体系数据的观察,各项指标数据均呈上升趋势,并无明显的波动,其变化趋势大多呈抛物线递增趋势,因此可以用时间t为自变量,各项指标的时序数值为因变量,运用二次曲线进行分别拟合,运用模型进行未来值预测,再将各项指标的未来值代入多元回归方程中进行目标变量的预测,这就是将多元回归预测与时序外推法相结合的组合预测法。通过趋势外推法的二次曲线拟合模型,各项指标的显著性均小于0.03,都具有统计学意义,可以进行未来值预测的同时代入多元回归方程,因此可得到海南大健康产业2016—2020年未来五年的预测值,见表10。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说论文指导海南省大健康产业人才需求多元回归预测模型的构建———基于主成(4)在线全文阅读。
相关推荐: