∴y2与x之间的函数关系式为y2= ②根据题意,借助函数图象: x﹣3x+(t≠3); 当抛物线y2开口方向向上时,6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,∵3>, ), ∴不合题意, 当抛物线y2开口方向向下时,6﹣2t<0,即t>3时, y1﹣y2=﹣(x﹣1)+3﹣[=(x﹣1)+22(x﹣1)+, 2] 若3t﹣11≠0,要使y1<y2恒成立, 只要抛物线y=(x﹣1)2+开口方向向下,且顶点(1,,符合题意; 也符合题意. . )在x轴下方, ∵3﹣t<0,只要3t﹣11>0,解得t>若3t﹣11=0,y1﹣y2=﹣<0,即t=综上,可以使y1<y2恒成立的t的取值范围是t≥
第 11 页 共 11 页
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2013年天津市中考数学试卷及答案(word解析版)(3)在线全文阅读。
相关推荐: