77范文网 - 专业文章范例文档资料分享平台

2013年天津市中考数学试卷及答案(word解析版)(2)

来源:网络收集 时间:2019-06-05 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

解答: 解:(1)根据条形图4+16+12+10+8=50(人), m=100﹣20﹣24﹣16﹣8=32; (2)∵=(5×4+10×16+15×12+20×10+30×8)=16, ∴这组数据的平均数为:16, ∵在这组样本数据中,10出现次数最多为16次, ∴这组数据的众数为:10, ∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15, ∴这组数据的中位数为:(15=15)=15; (3)∵在50名学生中,捐款金额为10元的学生人数比例为32%, ∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608, ∴该校本次活动捐款金额为10元的学生约有608名. 故答案为:50,32. 22.(8分)(2013?天津)已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D. (Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.

考点: 切线的性质;圆周角定理;直线与圆的位置关系. 分析: (Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°; (Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案. 解答: 解:(Ⅰ)如图①,连接OC, ∵直线l与⊙O相切于点C, ∴OC⊥l, ∵AD⊥l, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OA=OC, ∴∠BAC=∠OCA, ∴∠BAC=∠DAC=30°; (Ⅱ)如图②,连接BF, ∵AB是⊙O的直径, ∴∠AFB=90°, ∴∠BAF=90°﹣∠B, ∴∠AEF=∠ADE+∠DAE=90°+18°=108°, 在⊙O中,四边形ABFE是圆的内接四边形,

第 6 页 共 11 页

∴∠AEF+∠B=180°, ∴∠B=180°﹣108°=72°, ∴∠BAF=90°﹣∠B=180°﹣72°=18°. 23.(8分)(2013?天津)天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).

考点: 解直角三角形的应用-仰角俯角问题. 分析: 首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD﹣AB=CD﹣112;在Rt△BCD中,可得BD=CD?tan36°,即可得CD?tan36°=CD﹣112,继而求得答案. 解答: 解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m, ∵在Rt△ACD中,∠ACD=∠CAD=45°, ∴AD=CD, ∵AD=AB+BD, ∴BD=AD﹣AB=CD﹣112(m), ∵在Rt△BCD中,tan∠BCD=∴tan36°=, ,∠BCD=90°﹣∠CBD=36°, ∴BD=CD?tan36°, ∴CD?tan36°=CD﹣112, ∴CD=≈≈415(m). 答:天塔的高度CD为:415m. 24.(8分)(2013?天津)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100. (1)根据题题意,填写下表(单位:元) … 130 290 x 累计购物 实际花费 … 127 在甲商场

第 7 页 共 11 页

… 126 在乙商场 (2)当x取何值时,小红在甲、乙两商场的实际花费相同?

(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少? 解答: 解:(1)在甲商场:100+(290﹣100)×0.9=271, 100+(290﹣100)×0.9x=0.9x+10; 在乙商场:50+(290﹣50)×0.95=278, 50+(290﹣50)×0.95x=0.95x+2.5; (2)根据题意得出: 0.9x+10=0.95x+2.5, 解得:x=150, ∴当x=150时,小红在甲、乙两商场的实际花费相同, (3)由0.9x+10<0.95x+2.5, 解得:x>150, 0.9x+10>0.95x+2.5, 解得:x<150, yB=0.95x+50(1﹣95%)=0.95x+2.5,正确; ∴当小红累计购物大于150时上没封顶,选择甲商场实际花费少; 当小红累计购物超过100元而不到150元时,在乙商场实际花费少. 25.(10分)(2013?天津)在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E在OB上,且∠OAE=∠0BA. (Ⅰ)如图①,求点E的坐标;

(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.

2222

①设AA′=m,其中0<m<2,试用含m的式子表示A′B+BE′,并求出使A′B+BE′取得最小值时点E′的坐标; ②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).

解答: 解:(Ⅰ)如图①,∵点A(﹣2,0),点B(0,4), ∴OA=2,OB=4. ∵∠OAE=∠0BA,∠EOA=∠AOB=90°, ∴△OAE∽△OBA, ∴=,即=, 解得,OE=1, ∴点E的坐标为(0,1); (Ⅱ)①如图②,连接EE′. 由题设知AA′=m(0<m<2),则A′O=2﹣m. 在Rt△A′BO中,由A′B=A′O+BO,得A′B=(2﹣m)+4=m﹣4m+20. ∵△A′E′O′是△AEO沿x轴向右平移得到的,

第 8 页 共 11 页

2222222 ∴EE′∥AA′,且EE′=AA′. ∴∠BEE′=90°,EE′=m. 又BE=OB﹣OE=3, 2222∴在Rt△BE′E中,BE′=E′E+BE=m+9, 2222∴A′B+BE′=2m﹣4m+29=2(m﹣1)+27. 22当m=1时,A′B+BE′可以取得最小值,此时,点E′的坐标是(1,1). ②如图②,过点A作AB′⊥x,并使AB′=BE=3. 易证△AB′A′≌△EBE′, ∴B′A=BE′, ∴A′B+BE′=A′B+B′A′. 当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值. 易证△AB′A′∽△OBA′, ∴==, ∴AA′=×2=, ∴EE′=AA′=, ∴点E′的坐标是(,1). 26.(10分)(2013?天津)已知抛物线y1=ax+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的

部分对应值如下表所示:

(Ⅰ)求y1与x之间的函数关系式;

(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2). (1)求y2与x之间的函数关系式;

(2)当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.

… … x 0 3 ﹣1 2… … 0 0 y1=ax+bx+c 分析: (II)先根据(I)中y1与x之间的函数关系式得出顶点M的坐标. ①记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,由已知得,AM与BP互相垂直平分,故可得出四边形ANMP为菱形,所以PA∥l,再由点P(x,y2)可知点A(x,t)(x≠1),所以PM=PA=|y2﹣t|,过点

第 9 页 共 11 页

2

P作PQ⊥l于点Q,则点Q(1,y2),故QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,根据勾股定理即可得出y2与x之间的函数关系式,再由当点A与点C重合时,点B与点P重合可得出P点坐标,故可得出y2与x之间的函数关系式; ②据题意,借助函数图象:当抛物线y2开口方向向上时,可知6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),由于3>,所以不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t)在x轴下也符合题>3时,求出y1﹣y2的值;若3t﹣11≠0,要使y1<y2恒成立,只要抛物线方向及且顶点(1,方,因为3﹣t<0,只要3t﹣11>0,解得t>意. 解答: 解:(Ⅰ)∵抛物线经过点(0,), ∴c=. ∴y1=ax+bx+, ∵点(﹣1,0)、(3,0)在抛物线y1=ax+bx+上, 22,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=∴,解得, ∴y1与x之间的函数关系式为:y1=﹣x+x+; (II)∵y1=﹣x+x+, ∴y1=﹣(x﹣1)+3, ∴直线l为x=1,顶点M(1,3). ①由题意得,t≠3, 如图,记直线l与直线l′交于点C(1,t),当点A′与点C不重合时, ∵由已知得,AM与BP互相垂直平分, ∴四边形ANMP为菱形, ∴PA∥l, 又∵点P(x,y2), ∴点A(x,t)(x≠1), ∴PM=PA=|y2﹣t|, 过点P作PQ⊥l于点Q,则点Q(1,y2), ∴QM=|y2﹣3|,PQ=AC=|x﹣1|, 在Rt△PQM中, ∵PM=QM+PQ,即(y2﹣t)=(y2﹣3)+(x﹣1),整理得,y2=3222222222(x﹣1)+2, 即y2=x﹣x+, ∵当点A与点C重合时,点B与点P重合, ∴P(1,), ∴P点坐标也满足上式,

第 10 页 共 11 页

∴y2与x之间的函数关系式为y2= ②根据题意,借助函数图象: x﹣3x+(t≠3); 当抛物线y2开口方向向上时,6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,∵3>, ), ∴不合题意, 当抛物线y2开口方向向下时,6﹣2t<0,即t>3时, y1﹣y2=﹣(x﹣1)+3﹣[=(x﹣1)+22(x﹣1)+, 2] 若3t﹣11≠0,要使y1<y2恒成立, 只要抛物线y=(x﹣1)2+开口方向向下,且顶点(1,,符合题意; 也符合题意. . )在x轴下方, ∵3﹣t<0,只要3t﹣11>0,解得t>若3t﹣11=0,y1﹣y2=﹣<0,即t=综上,可以使y1<y2恒成立的t的取值范围是t≥

第 11 页 共 11 页

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2013年天津市中考数学试卷及答案(word解析版)(2)在线全文阅读。

2013年天津市中考数学试卷及答案(word解析版)(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/649099.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: