7直线滑轨 8 支撑套 9 定外环 10 电磁离合器 11 联轴器 12 座架 14 电机 15电磁离合器 16 转盘 17 垫脚 18 连接杆 19 齿轮 20 传动轴
图12 末端执行器的整体结构
1.机械爪 2.弹性材料硅胶 3.连接杆 4.止动块 5.滑轨 6.转盘.7.齿条 8.齿轮
图13 末端执行器的抓取机构
美国研制了研究员提出了一种西红柿采摘机器人,该机器人末端执行器采用了真空吸盘+四指机械爪,真空吸盘本身具备抓取功能,四个夹持手指对称分布,使用塑料质地代替尼龙材料,减小了夹持时的侧向运动,通过线缆连接起来共同驱动,可以更稳定的抓持住果实。如图14所示,这种柔性手指弯曲曲线平滑,具有一定的补偿能力,能够很好适应果实的大小差异。但该柔性手指由一个动力驱动4个手指的所有关节,属于高度欠驱动机构,当遇到枝叶稠密等障碍物时,
手指容易发生弯曲,易造成果实抓取的失败。
图14 美国的西红柿采摘机器人末端执行器
2.分离方式
无论夹持类和非夹持类采摘机器人末端执行器,都需要通过一定的方式完成果梗的切断或果梗与果实的分离,才能最终实现采摘果实。现有的采摘机器人末端执行器研究成果来看,多采用扭断、折断或剪切的分离方式,一些末端执行器对新的切割原理进行了尝试。 2.1 扭断、折断、拉断
扭断是利用手腕的旋转和周转关节在执行器抓牢果实后拧断果柄,需要多次往复扭转才能断开果梗,末端执行器需要较大的工作空间,这样就难于避障。这种方式对于果柄易断的果蔬较为实用,如番茄的采摘,但对于果柄柔韧性较高的果蔬则采摘成功率较低。而且无论扭断、折断或拉断都只适用于果实被充分夹持的情况下,其优点是无需再附加另外的分离装置和动力,但这就要求末端执行器的夹持机构夹持果实要足够可靠,对果实提供充分的作用力,又不能造成对果实的损伤,这样夹持器对果实的夹持力要有较高的控制。同时,还要根据采摘对象的果梗力学特性惊醒不同方式的选择和实验,否则难以
达到预期的效果。 2.2剪切
相当部分的采摘机器人末端执行器安装了剪刀或切刀装置,用来切断果梗实现果实、果梗分离。
如图15所示马履中等人研制的苹果采摘机器人末端执行器的切割装置示意图,切割装置采用直流电机作为动力源,利用软管钢丝传动,驱动刀片绕手指外廓做近一周的旋转,以切割位于手指周向上任意位置的苹果柄。这样省掉了检测果柄方位和调整末端执行器位姿的复杂过程,提高了采摘效率。同时,刀片设计成楔形,使得在切割过程中果柄与刀刃有滑动,更易切断果柄,保证了采摘的成功率。但刀片的旋转很难保证不对周围的果实或植物进行伤害。
1 直流电机 2 微型蜗轮蜗杆减速器 3 钢丝绕盘 4 钢丝 5 下软管架 6 弹性软管 7 上软管架 8 刀架 9 刀架转轮 10 转盘轴 11 契形刀片
图 15 切割装置示意图
如图16所示的茄子采摘机器人末端执行器的切割机构简图,该部分主要由三角传动支架、刀架、刀架导向杆(内有导向槽)和锯齿轮盘切刀组成。三角传动支架的后端移动端固定在双向丝杠移动的螺母上,前端同刀架固定在一起。刀架的后端铰接在电机轴上,前端固定在三角传动支架上,随三角传动支架移动可沿导向杆前后往复运动。随着电机转动带动夹持动作的进行,双向螺母向中间运动,三角传动支架顶点前伸,带刀架在导向槽内前进,从而使得锯齿轮盘切刀前进,完成切割。
1 刀架转向杆 2 据齿轮盘切刀 刀架 4 三角传动支架 5 同步带 6 同步带轮 7 滑轨 8 和丝杠配合的螺母 9蜗轮 10双向螺旋丝杠 11 蜗杆 12 电机轴
图 16 末端执行器切割机构简图(俯视)
利用切刀直接切断果柄。这种方法可适用于夹持类和非夹持类各种类型末端执行器,适用范围较广。首先剪刀必须能够直接接触到果梗,对果柄的方位要做出精确的检测,手腕要有必要的自由度,才能准确地切断果柄。同时其要求配置相应的传动、执行机构和动力,造成末端执行器装置的复杂、体积和质量的加大,增加了机器人结构和
控制的复杂性,成本较高,这往往成为其走向实用化的一大障碍。而剪切还可能由于剪刀的重复使用而造成植株间病菌的相互传染,切口还会导致果实水分的流失。 2.3 热切割
荷兰瓦宁根大学开发的黄瓜采摘机器人末端执行器,改变了传统的果梗分离方法,采用两个相对的热电极,当两电极与果梗接触时产生高频电流,果梗的高含水率使之迅速产生高温而将果梗“切”断。这种方式避免了病菌的相互传染和水分流失问题,但是这种方式要求两电极必须与果梗可靠接触,同样受到果梗长度和植株冠层空间的限制,对于常规栽培方式和品种的番茄,这种方式同剪刀剪切方式都难以达到满意的效果。 2.4 激光切断
图17所示的果梗切断装置结构示意图,通过非接触式的激光切断果梗,降低了机器人末端执行器装置的复杂性和对夹紧力控制精度的要求。
果梗激光切断装置由激光发生控制单元和果梗聚焦切断单元组成。其中激光发生控制单元由尺寸仅为92 mm×86 mm×20 mm的小型30W高功率光纤耦合半导体激光器和保护控制电路组成,保护控制电路对激光器进行直流供电和稳压保护,通过并联的可变电阻调节激光器供电电流。果梗聚焦切断单元由聚焦透镜、直流伺服电动机、联接与支承部件组成。激光器通过标准的SMA905型光纤连接头与聚焦透镜联接。作业时由固定于机械手上的双目视觉系统与末端执行器上
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库果蔬采摘机器人末端执行器的结构组成现状分析(3)在线全文阅读。
相关推荐: