1y?y12,又由于x?a为无理则x1?x2?a为无理数与有理点予盾,所以x1?x2,于是2?2x2?x1x2?ay?y111数,而2为有理数,所以y2??0,于是y2?y1??,所以直线只有一条,且这条直线方
x2?x1221程只能是y??,故正确的选项为C.
2二、填空题 11.300
y2?12.由于角A为锐角,所以AB?AC?0且AB,AC不共线,所以6?3m?0且2m?9,于是实数m的取值范围是(?2,)?(,??).
13.若A方格填3,则排法有2?32种,若A方格填2,则排法有1?32种,所以不同的填法有27种. 14.当5?3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5?4?5?5?3?4)?2?114. y 15.设A(1,1),B(?1,?1),则直线AB过原点,且阴影面积等于直线AB与圆弧所 围成的弓形面积S1,由图知,S1?9292S125528 ?4??2???2,又1??,所以??44901891
三、解答题: 16、解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B, ∵甲队第5,6场获胜的概率均为 ∴P(A)?(1?)??1 O 1 x ?1 32,第7场获胜的概率为, 5535363228?, P(B)?(1?)??, 5255512568和. 25125 ∴甲队以4:2,4:3获胜的概率分别为
(Ⅱ)随机变量X的可能取值为5,6,7, ∴P(X?5)?3336, P(X?6)?(1?)??, 5552532324P(X?7)?(1?)2??(1?)2?(1?)?,
555525 6 7 ∴随机变量X的分布列为
X 5 3 p 56 254 25 E(X)?5?364139?6??7??. 5252525·6·
17、解:(Ⅰ)由条件知,????1?73???,????,∴??,??,
323223??2410∴x1??,x2?,x3?,f(x)?3sin(x?).
333232(Ⅱ)∵函数f?x?的图像向右平移个单位得到函数g?x?的图像,
3?2??∴g?x??3sin[(x?)?]?3sinx,
2332∵函数g?x?在区间?0,m?(m??3,4?)上的图像的最高点和最低点分别为M,N,
∴最高点为M1,3,最低点为N3,?3, ∴ON?3,?3, NM??2,23, ∴cos??????????ON?NMON?NM??35?,又0????,∴??. 2618、解:(Ⅰ) ∵点N与M??1,1?关于原点O对称,∴点N?1,?1?,
设P?x,y?,∵直线MP与NP的斜率之积等于?∴
1, 3y B M O N P A 3 y?1y?11???,化简得x2?3y2?4 ?x??1?, x?1x?13∴动点P的轨迹方程为x2?3y2?4 ?x??1?.
(Ⅱ)法一:设存在点P?x0,y0?,使得?PMN与?PAB的面积相等, 11∴PA?PBsin?APB?PM?PNsin?MPN, 22∵sin?APB?sin?MPN?0, ∴PA?PB?PM?PN, 即
x PAPM?PNPB, ∴
3?x0x0?1?x0?13?x0,解得x0?5, 333533). , ∴满足条件的点P为(,?939法二:设P?x0,y0?,A?3,y1?,B?3,y2?
22∵x0?3y0?4, ∴y0??x0?4y0?3?y1?1y0?1??y?1?4?x0?1x0?1??∴?,解得? ,
y?12y?x?3y?10?2?y?0?02??x0?1x0?1?2?∴AB?y1?y2??2x0?6??x0?y0?2x0?1,
∵S?PAB?S?PMN,MN?22,又点P到直线MN的距离d?x0?y02,
·7·
∴
113?x0y1?y2?MNd, 22∴3?x0?2x0?6??x0?y0?2x0?1?2?x0?y0?x0?3??, ∴
2x0?125?1,解得x0?, 3zP22∵x0?3y0?4, ∴y0??33533). , ∴满足条件的点P为(,?939AOCy19、解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为
菱形,
?PA?PC,BA?BC,?PO?AC,BO?AC, 又PO?BO?O, ?AC?平面POB,又PB?平面POB, ?AC?PB.
Bx面PAC, (Ⅱ) ?平面PAC?平面ABC, 平面PAC?平面ABC?AC, PO?平 PO?AC,
?PO?面ABC,?OB,OC,OP两两垂直,
故以O为原点,以OB,OC,OP方向分别为x,y,z轴正方向建立空间直角坐标系, ??ABC?60,菱形ABCD的边长为2, ∴A(0,?1,0),B(3,0,0),C(0,1,0),P(0,0,3), AB?(3,1,0),PB?(3,0,?3),PC?(0,1,?3),
设平面PBC的法向量n?(x,y,z),直线AB与平面PBC成角为?,
0??3x?3z?0 ∴?,取x?1,则y?3,z?1,于是n?(1,3,1),
??y?3z?0 ∴sin??|cos?AB,n?|?|(Ⅲ)法一: 设
3?32?5|?1515, ∴直线AB与平面PBC成角的正弦值为.
55,
∴
?ABC??APC??,??(0,?)12?2sin??2sin?, 2PO?APcos?2?2cos?2,
S?ABC?14?8??sin?cos?sincos2
3323228???????sin?1?sin2? (0??), 32?2?2232????????2sin2?1?sin2??1?sin2? ∴V2?92?2??2?又PO?平面ABC, ∴VPABC?S?ABC?PO????2??1?sin2?1?sin2?2sin32222??9?3??????32?2, ?9?27??·8·
3 163?3??,当且仅当2sin2?1?sin2,即sin?时取等号, 272322163∴四面体PABC体积的最大值为.
27法二:设?ABC??APC??,??(0,?),
∴V?12?2sin??2sin?,又PO?平面ABC,
22214?8??∴VPABC?S?ABC?PO?sin?cos?sincos2
332322∴PO?APcos??2cos?,S?ABC? 设t?sin8???????sin?1?sin2? (0??),
2232?2??832383,则VPABC?(t?t),且0?t?1,
? ∴VPABC?(1?3t2),
33???t?1时,VPABC?0,当?0, 时,VPABC333163163∴当t?时,VPABC取得最大值,∴四面体PABC体积的最大值为.
32727∴当0?t?法三:设PO?x,则BO?x,AC?24?x2,?0?x?2?
又PO?平面ABC, ∴VP?ABC?1111PO?S?ABC??x??x?24?x2??x24?x2, 332312112211?x2?x2?8?2x222?x?x8?2x?∵?x4?x?33232?3????163??, ?27?3当且仅当x?8?2x,即x?20、解(Ⅰ) ∵f?x??2226163时取等号,∴四面体PABC体积的最大值为.
27312x?ax??a?1?lnx, 2x2?ax?a?1?x?1??x?1?a??∴f?(x)?(x?0),
xx2?x?1??0在?0,???上恒成立, 当a?2时,则f??x??x当1?a?2时,若x??a?1,1?,则f??x??0,若x??0,a?1?或x??1,???,则f??x??0, 当a?2时, 若x??1,a?1?,则f??x??0,若x??0,1?或x??a?1,???,则f??x??0,
综上所述:
·9·
当1?a?2时,函数f?x?在区间?a?1,1?上单调递减,在区间?0,a?1?和?1,???上单调递增; 当a?2时,函数f?x?在?0,???上单调递增;
当a?2时,函数f?x?在区间?1,a?1?上单调递减,在区间?0,1?和?a?1,???上单调递增. (Ⅱ)若a?2,则f?x??12x?2x?lnx,由(Ⅰ)知函数f?x?在区间?0,???上单调递增, 2(1)因为a1?10,所以a2?f?a1??f?10??30?ln10,可知a2?a1?0, 假设0?ak?ak?1(k?1),因为函数f?x?在区间?0,???上单调递增, ∴f?ak?1??f?ak?,即得ak?2?ak?1?0,
由数学归纳法原理知,an?1?an对于一切正整数n都成立,∴数列?an?为递增数列. (2)由(1)知:当且仅当0?a1?a2,数列?an?为递增数列, ∴f?a1??a1,即
12a1?3a1?lna1?0 ?a1为正整数?, 2x2?3x?112设g?x??x?3x?lnx ?x?1?,则g??x??,
x23?5,??)上递增, ∴函数g?x?在区间(2由于g?5??ln5?21、(1)解:
5?0,g?6??ln6?0,又a1为正整数,∴首项a1的最小值为6. 2?x??x?2y(Ⅰ)法一:设P?(x?,y?),依题意得:?,
?y?x?y? ∴M???1 1??1?2??1?, ∴, ∴MM?3??2??1??33 ?. ???11?????33??x??x?2y法二:设P?(x?,y?),依题意得:?,
?y?x?y?122???1??x?x?y????3333?1 ∴? , ∴M?? ?.
?11??y??1x??1y????33??33?·10·
12??x?x?y???33(Ⅱ) ∵点P?x,y?在圆x2?y2?1上,又?, 11?y??x??y?33?2??11??1∴?x??y?????x??y???1,即得2x?2?2x?y??5y?2?9,
3??33??3∴变换作用后得到的曲线C的方程为2x2?2xy?5y2?9. (2)解:(Ⅰ) ∵ 直线l过点P?1,0?,斜率为3,
221?x?1?t?2?∴直线l的一个参数方程为? ?t为参数?;
?y?3t?2?∵???cos2??8cos?, ∴??1?cos2???8cos? , 即得(?sin?)2?4?cos?,
∴y2?4x, ∴曲线C的直角坐标方程为y2?4x.
1?x?1?t?2?2(Ⅱ) 把?代入y2?4x整理得:3t?8t?16?0,
?y?3t?2?设点A,B对应的参数分别为t1,t2,则t1t2??1616, ∴PA?PB?t1t2?. 33(3)解:(Ⅰ)f?x??2x?1?2x?m?2x?2?2x?m??2x?2???2x?m??m?2 ∵m?0, ∴f?x??m?2?m?2, 当x?1时取等号,
∴f?x?max?m?2,又f?x?的最大值为3, ∴m?2?3,即m?1. (Ⅱ)根据柯西不等式得:a2?b2?c212???2??12??a?2b?c?,
22222∵a?2b?c?m?1, ∴a?b?c?????1, 6当
1111abc222??,即a?,b??,c?时取等号,∴a?b?c的最小值为.
66361?21 ·11·
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库福建省福州三中2015届高三校模拟考试数学(理)试题(2)在线全文阅读。
相关推荐: