求一螺栓为不合格品的概率. 【解】P(|X?10.05|?0.12)?P???X?10.050.06?0.12?? 0.06?
?1??(2)???0.0456(?2)?2[??1
2
(23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ),若要求P{120<X≤200}
≥0.8,允许σ最大不超过多少? 【解】P(120?X?200)?P160??120?160?X?160?200??????? ? ???40??40????????2??40??1?0. 8????????????故 ??401.29?31.25
24.设随机变量X分布函数为
=??A?Be?xtF(x),x?0,0),
?0,x?0.(??(1) 求常数A,B;
(2) 求P{X≤2},P{X>3}; (3) 求分布密度f(x).
?【解】(1)由??xlim???F(x)?1?A?1??xlim?0?F(x)?得?B??1
xlim?0?F(x)?(2) P(X?2)?F(2)?1?e?2?
P(X?3)?1?F(3)?1?(1?e?3?)?e?3?
)?F?(x)????e??x(3) f(x,x?0?0,x?0
25.设随机变量X的概率密度为
?x,0?x?1,f(x)=??2?x,1?x?2, ??0,其他.求X的分布函数F(x),并画出f(x)及F(x).
【解】当x<0时F(x)=0
当0≤x<1时F(x)??x??f(t)dt??0??f(t)dt??x0f(t)dt
26
??x0tdt?x22x??0??1
当1≤x<2时F(x)?????f(t)dt f(t)dt??10f(t)dt??x1f(t)dttdt?x(2?t)dt?0?1
1x2
?2?2x?2?32??x22?2x?1当x≥2时F(x)??x
??f(t)dt?1?0,x?0?2?x,0?x?1故 F(x)???2
?2??x?2x?1,1?x?2?2?1,x?226.设随机变量X的密度函数为
(1) f(x)=ae??|x|,λ>0;
?bx,0?x?1,(2) f(x)=??12,1?x?2, ?x?0,其他.试确定常数a,b,并求其分布函数F(x).
【解】(1) 由??f(x)dx????1知1???|x|??ae?dx?2a????x0edx?2a?
故 a??2
??e??x,x?0即密度函数为 f(x)????2
????2e?xx?0当x≤0时F(x)??x??f(x)dx??x??x??2edx?12e?x
当x>0时F(x)??xf(x)dx??0??xx????2edx???02e??xdx
?1?1?x2e?
27
故其分布函数
1??x?1?e,??2F(x)???1e?x,??2x?0 x?0(2) 由1???)dx??111??f(x0bxdx??21x2dx?b2?2
得 b=1 即X的密度函数为
?x,0?x?1?f(x)???11?x?2 ?x2,??0,其他当x≤0时F(x)=0 当0 ??xx20xdx?2 当1≤x<2时F(x)??xf(x)dx??00dx??1xdx??x1????01x2dx ?312?x 当x≥2时F(x)=1 故其分布函数为 ?0,x?0?x2?0?x?1F(x)???2, ?3??1,1?x?2?2x?1,x?227.求标准正态分布的上?分位点, (1)?=0.01,求z?; (2)?=0.003,求z?,z?/2. 【解】(1) P(X?z?)?0.01 即 1??(z?)?0.0 1即 ?(z?)?0.0 9 28 故 z??2.3 3(2) 由P(X?z?)?0.003得 1??(z?)?0.003 即 ?(z?)?0.99 7查表得 z??2.7 5由P(X?z?/2)?0.0015得 1??(z?/2)?0.0015 即 ?(z?/2)?0.9985 查表得 z?/2?2.96 28.设随机变量X的分布律为 X Pk ?2 ?1 0 1 3 1/5 1/6 1/5 1/15 11/30 求Y=X2的分布律. 【解】Y可取的值为0,1,4,9 P(Y?0)?P(X?0)?1516?115?730P(Y?1)?P(X??1)?P(X?1)?P(Y?4)?P(X??2)?P(Y?9)?P(X?3)?15 1130故Y的分布律为 Y Pk 0 1 4 9 1/5 7/30 1/5 11/30 1229.设P{X=k}=( )k, k=1,2,?,令 ?1,Y????1,当X取偶数时当X取奇数时. 求随机变量X的函数Y的分布律. 【解】P(Y?1)?P(X?2)?P(X?4)???P(X?2k)?? 29 ?(1?1(k2 2)2?(14 2)??2)?? ?(14)/(?114?)13P(Y??1)?1?P(Y?1)?23 30.设X~N(0,1). (1) 求Y=eX 的概率密度; (2) 求Y=2X2+1的概率密度; (3) 求Y=|X|的概率密度. 【解】(1) 当y≤0时,FY(y)?P(Y?y)?0 当y>0时,FY(y)?P(Y?y)?P(ex?y)?P(X?lny) ??lny??fX(x)dx 故 fdFY(y)?11/2Y(y)?dyyfx(lny)?1y2πe?ln2y,y?0(2)P(Y?2X2?1?1)?1 当y≤1时FY(y)?P(Y?y)?0 当y>1时F(Y?y)?P(2X2Y(y)?P?1?y) ?P?y?1?y?1?X2????P???X?y?1??2??2?? ?2? ??(y?1)/2?(y?1)/f2X(x)dx 故 fd2?y?1????Y(y)?dyFY(y)?1?4y?1?f??fy?1?X????2?X?????2??? ??? ?121(y?1)/2y?12πe?,4y?1 (3) P(Y?0)?1 当y≤0时FY(y)?P(Y?y)?0 当y>0时FY(y)?P(|X|?y)?P(?y?X?y) 30 百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库概率论和数理统计 - 复旦大学 - 课后题答案 - 一到五章(6)在线全文阅读。
相关推荐: