iter_max = 200; % 最大迭代次数 Route_best = zeros(iter_max,n); % 各代最佳路径 Length_best = zeros(iter_max,1); % 各代最佳路径的长度 Length_ave = zeros(iter_max,1); % 各代路径的平均长度 迭代寻找最佳路径 while iter <= iter_max
% 随机产生各个蚂蚁的起点城市 start = zeros(m,1); for i = 1:m
temp = randperm(n); start(i) = temp(1); end
Table(:,1) = start; % 构建解空间 citys_index = 1:n; % 逐个蚂蚁路径选择 for i = 1:m
% 逐个城市路径选择 for j = 2:n
tabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表) allow_index = ~ismember(citys_index,tabu);
allow = citys_index(allow_index); % 待访问的城市集合 P = allow;
% 计算城市间转移概率 for k = 1:length(allow)
P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta; end
P = P/sum(P);
% 轮盘赌法选择下一个访问城市 Pc = cumsum(P);
target_index = find(Pc >= rand); target = allow(target_index(1)); Table(i,j) = target; end end
% 计算各个蚂蚁的路径距离
Length = zeros(m,1); for i = 1:m
Route = Table(i,:); for j = 1:(n - 1)
Length(i) = Length(i) + D(Route(j),Route(j + 1)); end
Length(i) = Length(i) + D(Route(n),Route(1)); end
% 计算最短路径距离及平均距离 if iter == 1
[min_Length,min_index] = min(Length); Length_best(iter) = min_Length; Length_ave(iter) = mean(Length);
Route_best(iter,:) = Table(min_index,:); else
[min_Length,min_index] = min(Length);
Length_best(iter) = min(Length_best(iter - 1),min_Length); Length_ave(iter) = mean(Length); if Length_best(iter) == min_Length
Route_best(iter,:) = Table(min_index,:); else
Route_best(iter,:) = Route_best((iter-1),:); end end
% 更新信息素
Delta_Tau = zeros(n,n); % 逐个蚂蚁计算 for i = 1:m % 逐个城市计算 for j = 1:(n - 1)
Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i); end
Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i); end
Tau = (1-rho) * Tau + Delta_Tau; % 迭代次数加1,清空路径记录表
iter = iter + 1; Table = zeros(m,n); end 结果显示
[Shortest_Length,index] = min(Length_best); Shortest_Route = Route_best(index,:);
disp(['最短距离:' num2str(Shortest_Length)]);
disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]); 最短距离:15601.9195
最短路径:14 12 13 11 23 16 5 6 7 2 4 8 9 10 3 18 17 19 24 25 20 21 22 26 28 27 30 31 29 1 15 14 绘图 figure(1)
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],... [citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-'); grid on
for i = 1:size(citys,1)
text(citys(i,1),citys(i,2),[' ' num2str(i)]); end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点'); text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点'); xlabel('城市位置横坐标') ylabel('城市位置纵坐标')
title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')']) figure(2)
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:') legend('最短距离','平均距离') xlabel('迭代次数') ylabel('距离')
title('各代最短距离与平均距离对比')
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库matlab制作案例(2)在线全文阅读。
相关推荐: