77·¶ÎÄÍø - רҵÎÄÕ·¶ÀýÎĵµ×ÊÁÏ·ÖÏíÆ½Ì¨

¼ÆËã»úÍøÂç(µÚËİæ)¿ÎºóϰÌâ(Ó¢ÎÄ)+ϰÌâ´ð°¸(ÖÐÓ¢ÎÄ)(5)

À´Ô´£ºÍøÂçÊÕ¼¯ ʱ¼ä£º2018-12-10 ÏÂÔØÕâÆªÎĵµ ÊÖ»ú°æ
˵Ã÷£ºÎÄÕÂÄÚÈݽö¹©Ô¤ÀÀ£¬²¿·ÖÄÚÈÝ¿ÉÄܲ»È«£¬ÐèÒªÍêÕûÎĵµ»òÕßÐèÒª¸´ÖÆÄÚÈÝ£¬ÇëÏÂÔØwordºóʹÓá£ÏÂÔØwordÓÐÎÊÌâÇëÌí¼Ó΢ÐźÅ:»òQQ£º ´¦Àí£¨¾¡¿ÉÄܸøÄúÌṩÍêÕûÎĵµ£©£¬¸ÐлÄúµÄÖ§³ÖÓëÁ½⡣µã»÷ÕâÀï¸øÎÒ·¢ÏûÏ¢

½ÓÊÕ·½È·ÈÏ 6 ºÅÖ¡¡£µ± 7 ºÅÖ¡µ½À´µÄʱºò£¬½ÓÊÕ·½for ½«°Ñ 7 ºÅÖ¡ºÍ»º´æµÄ 0 ºÅÖ¡´«

d. (a) Stop-and-wait.

µÝ¸øÖ÷»ú£¬µ¼ÖÂЭÒé´íÎó¡£Òò´Ë£¬Äܹ»°²È«Ê¹ÓõÄ×î´ó´°¿ÚֵΪ 1¡£

e. (b) Protocol 5.

27. Consider the operation of protocol 6 over a 1-Mbps error-free line. The f. (c) Protocol 6.£¨E£© maximum frame size is 1000 bits. New packets are generated 1 second apart. The ¶ÔÓ¦ÈýÖÖЭÒéµÄ´°¿Ú´óСֵ·Ö±ðÊÇ 1¡¢7 ºÍ 4¡£ timeout interval is 10 msec. If the special acknowledgement timer were eliminated, unnecessary timeouts would occur. How many times would the average message be ʹÓÃÎÀÐÇÐŵÀ¶Ëµ½¶ËµÄµäÐÍ´«ÊäÑÓ³ÙÊÇ 270ms£¬ÒÔ 1Mb/s transmitted?£¨E£© 1000bit ³¤µÄÖ¡ ·¢ËÍ 1 λÓÃʱ¼ä 1 £¬·¢ËÍ 1000bit µÄ×֡»¨Ê±¼ä 1ms¡£ÓÉÓÚ³¬Ê±¼ä¸ôÊÇ 10ms£¬

¶ø 1s ²ÅÄܲúÉúÒ»¸öеÄÊý¾ÝÖ¡£¬ËùÒÔ³¬Ê±ÊDz»¿É±ÜÃâµÄ¡£¼Ù¶¨ A Õ¾Ïò B Õ¾·¢ËÍ

Ò»¸öÖ¡£¬ÕýÈ·µ½´ï½ÓÊÕ·½£¬µ«½Ï³¤Ê±¼äÎÞ·´Ïò½»Í¨¡£²»¾Ã£¬A Õ¾·¢Éú³¬Ê±Ê¼þ£¬µ¼

ÖÂÖØ·¢ÒÑ·¢¹ýµÄÒ»Ö¡¡£

B Õ¾·¢ÏÖÊÕµ½µÄÖ¡µÄÐòÁкŴíÎó£¬ÒòΪ¸ÃÐòÁкÅСÓÚËùÆÚ´ý½ÓÊÕµÄÐòÁкš£Òò´Ë B Õ¾½«·¢ËÍÒ»¸ö NAK£¬¸Ã NAK »áЯ´øÒ»¸öÈ·ÈϺţ¬µ¼Ö²»ÔÙÖØ·¢¸ÃÖ¡¡£½á¹ûÿ¸ö

Ö¡¶¼±»·¢ËÍÁ½´Î¡£

28. In protocol 6, MAX_SEQ = 2n - 1. While this condition is obviously desirable to make efficient use of header bits, we have not demonstrated that it is essential. Does the protocol work correctly for MAX_SEQ = 4, for example?£¨M£© ²»ÄÜ£¬Ð­ÒéµÄÔËÐн«»áʧ°Ü¡£µ± MaxSeq=4£¬ÐòÁкŵÄÄ£Êý=4+1=5£¬´°¿Ú´óС½« µÈÓÚ£ºNrBufs<=5/2=2.5£¬¼´µÃµ½£¬NrBufs=2¡£Òò´ËÔÚ¸ÃЭÒéÖУ¬Å¼ÊýÐòºÅʹÓûº³å Çø 1¡£ÕâÖÖÓ³ÉäÒâζ×ÅÖ¡ 4 ºÍ 0 ½«Ê¹ÓÃͬһ»º³åÇø¡£¼Ù¶¨ 0 ÖÁ 3 ºÅÖ¡¶¼ÕýÈ·ÊÕµ½ÁË£¬

²¢ÇÒ¶¼È·ÈÏÓ¦´ðÁË£¬²¢ÇÒ¶¼È·ÈÏÓ¦´ðÁË¡£Èç¹ûËæºóµÄ 4 ºÅÖ¡¶ªÊ§£¬ÇÒÏÂÒ»¸ö 0 ºÅÖ¡

ÊÕµ½ÁË£¬Ð嵀 0 ºÅÖ¡½«±»·Åµ½»º³åÇø 0 ÖУ¬±äÁ¿ arrived[0]±»ÖóɨDÕæ¡¬¡£ÕâÑù£¬Ò»¸ö

ʧÐòÖ¡½«±»Í¶µÝ¸øÖ÷»ú¡£ÊÂʵÉÏ£¬²ÉÓÃÑ¡ÔñÐÔÖØ´«µÄ»¬¶¯´°¿ÚЭÒéÐèÒª MaxSeq ÊÇ

ÆæÊý²ÅÄÜÕýÈ·µÄ¹¤×÷¡£È»¶øÆäËûµÄ»¬¶¯´°¿ÚЭÒéµÄʵÏÖ²¢²»¾ßÓÐÕâÒ»ÐÔÖÊ¡£ 29. Frames of 1000 bits are sent over a 1-Mbps channel using a geostationary satellite whose propagation time from the earth is 270 msec. Acknowledgements are always piggybacked onto data frames. The headers are very short. Three-bit

sequence numbers are used. What is the maximum achievable channel utilization

·¢ËÍ£¬

µÄ·¢ËÍʱ¼äΪ 1ms¡£ÎÒÃÇÓà t=0 ±íʾ´«Ê俪ʼµÄʱ¼ä£¬ÄÇôÔÚ t=1ms ʱ£¬µÚÒ»Ö¡·¢

ËÍÍê±Ï£»t=271ms ʱ£¬µÚÒ»Ö¡ÍêÈ«µ½´ï½ÓÊÕ·½£»t=272ms£¬¶ÔµÚÒ»Ö¡µÄÈ·ÈÏÖ¡·¢ËÍÍê

±Ï£»t=542ms£¬´øÓÐÈ·ÈϵÄÖ¡ÍêÈ«µ½´ï·¢ËÍ·½¡£Òò´ËÒ»¸ö·¢ËÍÖÜÆÚΪ 542ms¡£Èç¹ûÔÚ

542ms ÄÚ¿ÉÒÔ·¢ËÍ k ¸öÖ¡£¬ÓÉÓÚÿһ¸öÖ¡µÄ·¢ËÍʱ¼äΪ 1ms£¬ÔòÐŵÀÀûÓÃÂÊΪ k/542£¬ Òò´Ë£º

£¨a£© k=1£¬×î´óÐŵÀÀûÓÃÂÊ=1/542=0.18% £¨b£© k=7£¬×î´óÐŵÀÀûÓÃÂÊ=7/542=1.29% £¨c£© k=4£¬×î´óÐŵÀÀûÓÃÂÊ=4/542=0.74%

µÚÒ»Ö¡ ·¢ËÍÍê±Ï£»

t=270+80=350ms£¬µÚÒ»Ö¡ÍêÈ«µ½´ï½ÓÊÕ·½£»t=350+80=430ms£¬¶ÔµÚÒ»Ö¡×÷ÉÓ´øÈ· Èϵķ´ÏòÊý¾ÝÖ¡¿ÉÄÜ·¢ËÍÍê±Ï£»t=430+270=700ms£¬´øÓÐÈ·Èϵķ´ÏòÊý¾ÝÖ¡ÍêÈ«µ½ ´ï·¢ËÍ·½¡£Òò´Ë£¬ÖÜÆÚΪ 700ms£¬·¢ËÍ 128 ֡ʱ¼ä 80*128=10240ms£¬ÕâÒâζ×Å´« Êä¹ÜµÀ×ÜÊdzäÂúµÄ¡£Ã¿¸öÖ¡ÖØ´«µÄ¸ÅÂÊΪ 0.01£¬¶ÔÓÚ 3960 ¸öÊý¾Ýλ£¬Í·¿ªÏúΪ 40 λ£¬Æ½¾ùÖØ´«µÄλÊýΪ 4000*0.01=40 룬´«ËÍ NAK µÄƽ¾ùλÊýΪ 40*1/100=0.40 룬ËùÒÔÿ 3960 ¸öÊý¾ÝλµÄ×Ü¿ªÏúΪ 80.4 λ¡£ Òò´Ë£¬¿ªÏúËùÕ¼µÄ´ø¿í±ÈÀýµÈÓÚ 80.4/(3960+80.4)=1.99%¡£

31. Consider an error-free 64-kbps satellite channel used to send 512-byte data frames in one direction, with very short acknowledgements coming back the other way. What is the maximum throughput for window sizes of 1, 7, 15, and 127? The earth-satellite propagation time is 270 msec.£¨M£©

30. Compute the fraction of the bandwidth that is wasted on overhead (headers and retransmissions) for protocol 6 on a heavily-loaded 50-kbps satellite channel with data frames consisting of 40 header and 3960 data bits. Assume that the signal ʹÓÃÎÀÐÇÐŵÀ¶Ëµ½¶ËµÄ´«ÊäÑÓ³ÙΪ 270ms£¬ÒÔ 64kb/s ·¢ËÍ£¬ÖÜÆÚµÈÓÚ propagation time from the earth to the satellite is 270 msec. ACK frames never

604ms¡£·¢

occur. NAK frames are 40 bits. The error rate for data frames is 1 percent, and the

ËÍÒ»Ö¡µÄʱ¼äΪ 64ms£¬ÎÒÃÇÐèÒª 604/64=9 ¸öÖ¡²ÅÄܱ£³ÖͨµÀ²»¿Õ¡£ error rate for NAK frames is negligible. The sequence numbers are 8 bits.£¨M£©

·¢ËÍ 4096 룬ÍÌÍÂÂÊΪ ʹÓÃÑ¡ÔñÐÔÖØ´«»¬¶¯´°¿ÚЭÒ飬ÐòÁкų¤¶ÈÊÇ 8 λ¡£´°¿Ú´óСΪ 128¡£ÎÀÐÇÐŶÔÓÚ´°¿ÚÖµ 1£¬Ã¿ 604ms µÀ

¶Ëµ½¶ËµÄ´«ÊäÑÓ³ÙÊÇ 270ms¡£ÒÔ 50kb/s µÄ·¢

ËÍʱ¼äÊÇ 0.02*4000=80ms¡£ÎÒÃÇÓà t=0

4096/0.604=6.8kb/s¡£

·¢ËÍ 4096*7 룬ÍÌÍÂÂÊΪ ·¢ËÍ£¬4000bit£¨3960+40£©³¤µÄÊý¾ÝÖ¡¶ÔÓÚ´°¿ÚÖµ 7£¬Ã¿ 604ms

4096*7/0.604=47.5kb/s¡£

±íʾ´«Ê俪ʼʱ¼ä£¬ÄÇô£¬t=80ms£¬¶ÔÓÚ´°¿ÚÖµ³¬¹ý 9£¨°üÀ¨ 15¡¢127£©£¬ÍÌÍÂÂÊ´ïµ½×î´óÖµ£¬¼´ 64kb/s¡£

- 11 -

32. A 100-km-long cable runs at the T1 data rate. The propagation speed in the cable is 2/3 the speed of light in vacuum. How many bits fit in the cable?£¨E£© ÔڸõçÀÂÖеĴ«²¥ËÙ¶ÈÊÇÿÃëÖÓ 200 000km£¬¼´Ã¿ºÁÃë 200km£¬Òò´Ë 100km

T1 Ö¡£¬¼´ 193*4=772bit¡£

33. Suppose that we model protocol 4 using the finite state machine model. How

many states exist for each machine? How many states exist for the communication

channel? How many states exist for the complete system (two machines and the channel)? Ignore the checksum errors.£¨M£© ÿ̨»úÆ÷¶¼ÓÐÁ½¸ö¹Ø¼üµÄ±äÁ¿ next3frame3to3send and frame3expected£¬Ã¿¸ö¶¼¿É

ÒÔȡֵ 0 »ò 1¡£Òò´Ë£¬Ã¿Ì¨»úÆ÷¶¼ÓÐËÄÖÖ¿ÉÄܵÄ״̬¡£ÔÚÐŵÀÉϵÄÒ»¸öÏûÏ¢°üº¬ÁË

Òª±»·¢Ë͵ÄÖ¡µÄÐòÁкźͱ»È·ÈϵÄÖ¡µÄÐòÁкš£Òò´Ë£¬´æÔÚËÄÖÖÀàÐ͵ÄÏûÏ¢¡£ÐŵÀ µÄµç À½«»áÔÚ 0.5ms ÄÚÌîÂú¡£T1 ËÙÂÊ 125 ´«ËÍÒ»¸ö 193 λµÄÖ¡£¬0.5ms ¿ÉÒÔ´«ËÍ 4 ¸ö ¼¤·¢ÐòÁÐÊÇ 10£¬6£¬2£¬8¡£ËüͨÐÅÈ¥½ÓÊÕÒ»¸öżÊý£¬È·È϶ªÊ§£¬·¢ËÍÕß³¬Ê±£¬²¢ ÇÒÖØÐÂÓɽÓÊÕÕßÉú³ÉÈ·ÈÏ¡£ 35. Given the transition rules AC¨¤B, B¨¤AC, CD¨¤E, and E¨¤CD, draw the

Petri net described. From the Petri net, draw the finite state graph reachable from the initial state ACD. What well-known concept do these transition rules model?(E)

¿ÉÄÜÔÚÿ¸ö·½ÏòÉÏÓÐ 0 »ò 1 ÌõÏûÏ¢¡£ËùÒÔ£¬ÐŵÀÉÏ״̬µÄÊýÁ¿ÊÇ´ø×Å 0 ÌõÏûÏ¢µÄ 1

¸ö£¬´ø×Å 1 ÌõÏûÏ¢µÄ 8 ¸ö£¬´ø×Å 2 ÌõÏûÏ¢µÄ 16 ¸ö (ÿ¸ö·½ÏòÉÏÖ»ÓÐÒ»ÌõÏûÏ¢)¡£

×ܹ²ÓÐ 1 + 8 + 16 = 25 ÖÖ¿ÉÄܵÄÐŵÀ״̬¡£¶ÔÍêÕûµÄϵͳÕâÒþº¬ÁË 4*4*25 =400

ÖÖ¿ÉÄܵÄ״̬¡£

34. Give the firing sequence for the Petri net of Fig. 3-23 corresponding to the state sequence (000), (01A), (01¡ª), (010), (01A) in Fig. 3-21. Explain in words what

the sequence represents.£¨M£©

Petri ÍøºÍ״̬ͼÈçÏ ϵͳģÐÍÊÇ»¥³âµÄ¡£ B ºÍ E Êǹؼü¶ÎËüÃDz»ÄÜͬʱ±»¼¤»î£¬ÀýÈç²»ÔÊÐí״̬ BE£¬

λÖà C ´ú±íÒ»¸ö·ûºÅËü¿ÉÒÔ±» A »ò D ÍÆ³ö£¬µ«ÊDz»ÄÜͬʱ±» AD ÍÆ³ö¡£ ±¾ÌâÊǹØÓÚ Petri ÍøµÄ£¬¸ù¾ÝÌâÄ¿µÄÃèÊö£¬Ó¦¸ÃÊÇ B ÍÆ³ö C£¬E ÍÆ³ö C£¬ËùÒÔ´ð°¸

µÄͼ¼ýÍ·Ó¦¸ÃÓÉ B¡¢E Ö¸Ïò C¡£

- 12 -

Chapter 4 The Medium Access Control Sublayer Problems

e. (b) What is the probability of exactly k collisions and then a success?

f. (c) What is the expected number of transmission attempts needed?£¨M£©

1. For this problem, use a formula from this chapter, but first state the formula. Frames arrive randomly at a 100-Mbps channel for transmission. If the channel is £¨a£©ÔÚÈÎһ֡ʱ¼äÄÚÉú³É k Ö¡µÄ¸ÅÂÊ·þ´Ó²´ËÉ·Ö²¼

busy when a frame arrives, it waits its turn in a queue. Frame length is exponentially distributed with a mean of 10,000 bits/frame. For each of the following Éú³É 0 Ö¡µÄ¸ÅÂÊΪ e-G£»¶ÔÓÚ´¿µÄ ALOHA£¬·¢ËÍÒ»Ö¡µÄ³åͻΣÏÕÇøÎªÁ½¸ö֡ʱ£¬ frame arrival rates, give the delay experienced by the average frame, including both ÔÚÁ½Ö¡ÄÚÎÞÆäËûÖ¡·¢Ë͵ĸÅÂÊÊÇ e-G¡Áe ¨CG=e-2G£»¶ÔÓÚ·Ö϶µÄ ALOHA£¬ÓÉÓÚ³åͻΣÏÕ queueing time and transmission time.£¨E£© Çø¼õÉÙΪԭÀ´µÄÒ»°ë£¬ÈÎһ֡ʱÄÚÎÞÆäËûÖ¡·¢Ë͵ĸÅÂÊÊÇ e-G¡£ a. (a) 90 frames/sec. b. (b) 900 frames/sec. c. (c) 9000 frames/sec. ÅŶÓÀíÂÛÑÓ³Ùʱ¼ä¹«Ê½£º £¬ÕâÀïÐŵÀÈÝÁ¿ C=108 and £¬ËùÒÔ ÏÖÔÚʱ϶³¤¶ÈΪ 40ms£¬¼´Ã¿Ãë 25 ¸öʱ϶£¬²úÉú 50

´ÎÇëÇó£¬

ËùÒÔÿ¸öʱ϶²úÉú Á½¸öÇëÇó£¬G=2¡£Òò´Ë£¬Ê״γ¢ÊԵijɹ¦ÂÊÊÇ£ºe-2= 1/ e2 £¨b£© £¨c£©³¢ÊÔ k ´Î³åÍ»£¬µÚ k ´Î²ÅÄÜ·¢Ëͳɹ¦µÄ¸ÅÂÊ£¨¼´Ç° k-1´Î²Å³É¹¦£©Îª£º

sec£¬¶ÔÉÏÃæµÄÈýÖÖÖ¡µ½´ïÂÊ?£¬ÓÐ (a) 0.1 msec,(b) 0.11 msec, (c) 1 msec. ¶ÔÓÚ (c)£¬ 10 ±¶ÑÓ³Ù¡£ ÓÉ sec. What is the approximate total channel load?£¨E£© 2. A group of N stations share a 56-kbps pure ALOHA channel. Each station ¦Ìoutputs a 1000-bit frame on an average of once every 100 sec, even if the previous ÿ¸öÖÕ¶Ëÿ 200£¨=3600/18£©Ãë×öÒ»´ÎÇëÇó£¬×ܹ²ÓÐ 10 000 ¸öÖÕ¶Ë£¬Òò´Ë£¬×ܵÄ

Ãë×ö 10000 ´ÎÇëÇ󡣯½¾ùÿÃëÖÓ 50 ´ÎÇëÇó¡£Ã¿one has not yet been sent (e.g., the stations can buffer outgoing frames). What is ¸ºÔØÊÇ 200 ÃëÖÓ 8000 ¸öʱ϶£¬Ëù the ÒÔÆ½¾ùÿ¸öʱ϶µÄ·¢ËÍ´ÎÊýΪ 50/8000=1/160¡£ maximum value of N?£¨E£© 5. A large population of ALOHA users manages to generate 50 requests/sec, ¶ÔÓÚ´¿µÄ ALOHA£¬ÐŵÀÀûÓÃÂÊΪ 1/e2= 0.184£¬¿ÉÓõĴø¿íÊÇ 0.184¡Á56 Kb/s=10.304Kb/ s¡£Ã¿¸öÕ¾ÐèÒªµÄ´ø¿íΪ 1000/100=10b/s¡£¶øN=10304/10¡Ö1030 including both originals and retransmissions. Time is slotted in units of 40 msec. d. (a) What is the chance of success on the first attempt? ËùÒÔ£¬×î¶à¿ÉÒÔÓÐ 1030 ¸öÕ¾£¬¼´ N µÄ×î´óֵΪ 1030¡£ 3. Consider the delay of pure ALOHA versus slotted ALOHA at low load. Which one is less? Explain your answer.£¨E£© ¶ÔÓÚ´¿µÄ ALOHA£¬·¢ËÍ¿ÉÒÔÁ¢¼´¿ªÊ¼¡£¶ÔÓÚ·Ö϶µÄ ALOHA£¬Ëü±ØÐëµÈ´ýÏÂÒ»¸ö ʱ϶¡£ÕâÑù£¬Æ½¾ù»áÒýÈë°ë¸öʱ϶µÄÑÓ³Ù¡£Òò´Ë£¬´¿ ALOHA С¡£ µÄÑӳٱȽÏ4. Ten thousand airline reservation stations are competing for the use of a single

slotted ALOHA channel. The average station makes 18 requests/hour. A slot is 125

°Ù¶ÈËÑË÷¡°77cn¡±»ò¡°Ãâ·Ñ·¶ÎÄÍø¡±¼´¿ÉÕÒµ½±¾Õ¾Ãâ·ÑÔĶÁÈ«²¿·¶ÎÄ¡£Êղر¾Õ¾·½±ãÏ´ÎÔĶÁ£¬Ãâ·Ñ·¶ÎÄÍø£¬Ìṩ¾­µäС˵×ÛºÏÎÄ¿â¼ÆËã»úÍøÂç(µÚËİæ)¿ÎºóϰÌâ(Ó¢ÎÄ)+ϰÌâ´ð°¸(ÖÐÓ¢ÎÄ)(5)ÔÚÏßÈ«ÎÄÔĶÁ¡£

¼ÆËã»úÍøÂç(µÚËİæ)¿ÎºóϰÌâ(Ó¢ÎÄ)+ϰÌâ´ð°¸(ÖÐÓ¢ÎÄ)(5).doc ½«±¾ÎĵÄWordÎĵµÏÂÔØµ½µçÄÔ£¬·½±ã¸´ÖÆ¡¢±à¼­¡¢ÊղغʹòÓ¡ ÏÂÔØÊ§°Ü»òÕßÎĵµ²»ÍêÕû£¬ÇëÁªÏµ¿Í·þÈËÔ±½â¾ö£¡
±¾ÎÄÁ´½Ó£ºhttps://www.77cn.com.cn/wenku/zonghe/355989.html£¨×ªÔØÇë×¢Ã÷ÎÄÕÂÀ´Ô´£©

Ïà¹ØÍÆ¼ö£º

Copyright © 2008-2022 Ãâ·Ñ·¶ÎÄÍø °æÈ¨ËùÓÐ
ÉùÃ÷ :±¾ÍøÕ¾×ðÖØ²¢±£»¤ÖªÊ¶²úȨ£¬¸ù¾Ý¡¶ÐÅÏ¢ÍøÂç´«²¥È¨±£»¤ÌõÀý¡·£¬Èç¹ûÎÒÃÇ×ªÔØµÄ×÷Æ·ÇÖ·¸ÁËÄúµÄȨÀû,ÇëÔÚÒ»¸öÔÂÄÚ֪ͨÎÒÃÇ£¬ÎÒÃǻἰʱɾ³ý¡£
¿Í·þQQ£º ÓÊÏ䣺tiandhx2@hotmail.com
ËÕICP±¸16052595ºÅ-18
¡Á ×¢²á»áÔ±Ãâ·ÑÏÂÔØ£¨ÏÂÔØºó¿ÉÒÔ×ÔÓɸ´ÖƺÍÅŰ棩
×¢²á»áÔ±ÏÂÔØ
ȫվÄÚÈÝÃâ·Ñ×ÔÓɸ´ÖÆ
×¢²á»áÔ±ÏÂÔØ
ȫվÄÚÈÝÃâ·Ñ×ÔÓɸ´ÖÆ
×¢£ºÏÂÔØÎĵµÓпÉÄÜ¡°Ö»ÓÐĿ¼»òÕßÄÚÈݲ»È«¡±µÈÇé¿ö£¬ÇëÏÂÔØÖ®Ç°×¢Òâ±æ±ð£¬Èç¹ûÄúÒѸ¶·ÑÇÒÎÞ·¨ÏÂÔØ»òÄÚÈÝÓÐÎÊÌ⣬ÇëÁªÏµÎÒÃÇЭÖúÄã´¦Àí¡£
΢ÐÅ£º QQ£º