2017年上海市奉贤区中考数学二模试卷
参考答案与试题解析
一、选择题(本大题共6小题,每小题4分,共24分) 1.A.
的倒数是( ) B.2
C.
D.﹣
【考点】76:分母有理化. 【分析】
的倒数是
,再分母有理化即可.
,
.
【解答】解:故选:C.
的倒数是
2.下列算式的运算结果为m2的是( ) A.m?m
4
﹣2
B.m÷m
63
C.(m) D.m﹣m
﹣1242
【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方;6F:负整数指数幂.
【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.
【解答】解:m?m=m,故A符合题意; B、m6÷m3=m3,故B不符合题意; C、(m﹣1)2=
4
2
2
4
﹣2
2
,故C不符合题意;
D、m﹣m≠m,故D不符合题意; 故选:A.
3.直线y=(3﹣π)x经过的象限是( )
A.一、二象限 B.一、三象限 C.二、三象限 D.二、四象限 【考点】F6:正比例函数的性质.
【分析】先根据正比例函数的解析式判断出k的值,再根据一次函数的图象与系数的关系即
可得出结论.
【解答】解:∵直线y=(3﹣π)x中,k<0, ∴此直线经过二、四象限. 故选D.
4.李老师用手机软件记录了某个月(30天)每天走路的步数(单位:万步),她将记录的结果绘制成了如图所示的统计图,在李老师每天走路的步数这组数据中,众数与中位数分别为( )
A.1.2与1.3 B.1.4与1.35 C.1.4与1.3 D.1.3与1.3
【考点】W5:众数;W4:中位数.
【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.
【解答】解:由条形统计图中出现频数最大条形最高的数据是在第四组,1.4万步,故众数是1.4(万步);
因图中是按从小到大的顺序排列的,最中间的步数都是1.3(万步),故中位数是1.3(万步). 故选C.
5.小明用如图所示的方法画出了与△ABC全等的△DEF,他的具体画法是:①画射线DM,在射线DM上截取DE=BC;②以点D为圆心,BA长为半径画弧,以点E为圆心,CA长为半径画弧,画弧相交于点F;③联结FD,FE;这样△DEF就是所要画的三角形,小明这样画图的依据是全等三角形判定方法中的( )
A.边角边 B.角边角 C.角角边 D.边边边 【考点】N3:作图—复杂作图;KB:全等三角形的判定.
【分析】根据画法可得,DE=BC,BA=DF,CA=EF,依据SSS可判定△ABC≌△FDE. 【解答】解:根据画法可得,DE=BC,BA=DF,CA=EF, 在△ABC和△FDE中,
,
∴△ABC≌△FDE(SSS),
∴这样画图的依据是全等三角形判定方法中的SSS, 故选:D.
6.已知两圆相交,它们的圆心距为3,一个圆的半径是2,那么另一个圆的半径长可以是( ) A.1
B.3
C.5
D.7
【考点】MJ:圆与圆的位置关系.
【分析】本题直接告诉了大圆的半径及两圆位置关系,圆心距,求小圆半径的取值范围,据数量关系与两圆位置关系的对应情况便可直接得出答案.相交,则R﹣r<P<R+r.(P表示圆心距,R,r分别表示两圆的半径).
【解答】解:因为两圆相交,圆心距P满足:R﹣r<P<R+r,即3<P<7,满足条件的圆心距只有B, 故选B.
二、填空题(本大题共12小题,每小题4分,共48分) 7.计算:(﹣1)2012+20﹣
= 0 .
【考点】2C:实数的运算;6E:零指数幂.
【分析】原式利用乘方的意义,零指数幂,以及算术平方根定义计算即可得到结果. 【解答】解:原式=1+1﹣2=0. 故答案为:0 8.函数
的定义域是 x≥ .
【考点】E4:函数自变量的取值范围.
【分析】根据二次根式的性质的意义,被开方数大于或等于0,可以求出x的范围. 【解答】解:根据题意得:2x﹣1≥0, 解得:x≥. 故答案为x≥. 9.方程
的解是 x=0 .
【考点】AG:无理方程.
【分析】把方程两边平方去根号后求解. 【解答】解:两边平方得:x=x2, 解方程的:x1=0,x2=1,
检验:当x1=0时,方程的左边=右边=0, ∴x=0为原方程的根
当x2=1时,原方程无意义,故舍去. 故答案为:x=0.
10.如果抛物线y=ax﹣3的顶点是它的最低点,那么a的取值范围是 a>0 . 【考点】H3:二次函数的性质;H7:二次函数的最值.
【分析】由于原点是抛物线y=ax﹣3的最低点,这要求抛物线必须开口向上,由此可以确定a的范围.
【解答】解:∵原点是抛物线y=ax2﹣3的最低点, ∴a>0. 故答案为a>0.
2
2
11.若关于x的方程x﹣kx+4=0有两个相等的实数根,则k的值为 ±4 . 【考点】AA:根的判别式.
【分析】因为方程有两个相等的实数根,说明根的判别式△=b2﹣4ac=0,由此可以得到关于k的方程,解方程即可求出k的值. 【解答】解:∵方程有两个相等的实数根, 而a=1,b=﹣k,c=4,
∴△=b2﹣4ac=(﹣k)2﹣4×1×4=0, 解得k=±4. 故填:k=±4.
12.如果点P(m﹣3,1)在反比例函数y=的图象上,那么m的值是 4 . 【考点】G6:反比例函数图象上点的坐标特征.
【分析】直接把点P(m﹣3,1)代入反比例函数y=,求出m的值即可. 【解答】解:∵点P(m﹣3,1)在反比例函数y=的图象上, ∴1=
,解得m=4.
2
故答案为:4.
13.学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“诗句默写”的试题4个,小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是 【考点】X4:概率公式.
【分析】根据共设有20道试题,其中有关“诗句作者”的试题6个,再根据概率公式即可得出答案.
【解答】解:∵共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“诗句默写”的试题4个,
∴小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是:故答案为:
.
=
.
.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库上海市奉贤区2017年中考数学二模试卷(含解析)(2)在线全文阅读。
相关推荐: