3?i?z02dz???3t?it??3?i?dt??3?i?20121?t02dt??3?i?23131?3?i?26 t??6?i3033(2)设曲线c1为从原点到点(3,0)的直线段c2
?x?3其参数方程为?0?t?1z?3?ti
y?t?由积分算发法2得
3?i?3,0?2?3,1?2?z0dz?z???0,0dz?z???3,02dz??z2dz??z2dz
c1c222?zdz???3t??3dt??27tdt?9t22c1001110?9
126231z=zd????????3?tiidt?3?tid3?ti?3?ti??3?i ?c2??22001130326?26 故z2dz?z2dz?z2dz?9???3?i?6?i?????c1c23?3?0沿两条路线的积分值相等。 2、抛物线y?x2的参数方程为?3?i?x?t0?t?1,复参数方程为 2?y?tz?t?it2,dz=(2ti+1)dt t. 由积分算法2得
??x012?iydz??t?it01?1?22??2ti?1?dt??1?i??t?2ti?1?dt
201?111??1?i??2t3i?t2dt??1?i??t4i?t3?2030???1????1?5i 0?66?3、解 (1)
dzdz??cz2?2z?4?c?z?1?2?3,被积函数的奇点为
z1??1?3i,z2??1?3i由于z1?z2?2,所以两奇点均在圆z?1外,由柯西-古萨基
本定理可知,?dz?0, 2z?2z?4(2)z?1在圆内,f?z??1.由柯西积分公式得
2?dz1z?2C?2?i?1?2?i。
z(3)由于f?z??ze,在复平面上处处解析,故由柯西-古萨基本定理可知zedz?0
?zc(4)设
i??A?z?2??B?z???A?B?z?2A?iB1AB2?44 ?2f?z??????iz?2i?i?i?????z???z?2?z??z???z?2??z???z?2?22?2?2?????0??A?B, 解得A?1?2,B??2, i?2A?B?1i4?i4?i?2?z?2??dz2?dzdz?,
????c?i?i?cz?2?4?i??c?z??z???z?2???2??2??由于i2在圆,z?1内,所以?1z?i2cdz?2?i,由于-2不在圆,z?1内
dz24?i ,从而?dz?0,所以??2?i?.cz?2?c?i?4?i4?i?z???z?2?2??4、解(1)由于f?z??ez在复平面上处处解析,故有柯西积分公式可得
ezz2dz?2?ie?2?ei ?c:z?2?1z?2z?2 (2)因为被积函数f?z??z 的奇点z?3在圆 z?2;之外,故由柯西-古z?3萨基本定理可知
z?cz?3dz?0
(3)被积函数f?z???1的奇点为z??i,z??2i,由于曲线.c为圆 z?32z2?1z2?4???由于z??i在c内,z??2i 在c外,,根据复合闭路定理及柯西积分公式得
??zc2dz??1z2?4???z?i?r1??dzz?4?z?i??z?i2?z?i?r2??dzz?4?z?i? z?i2???11?2?i?2???0 2?i?4?i?i???i??4??i?i??????注:适当取r1,r2的大小,使两圆互不包含又互不相交。
5、解 (1)因为e在复平面上处处解析,且其原函数之一为它自己。故由定理三知,
z???23?i?ie2zdz?12z3?i16?ie?e?e?2?i??i22??
1?cos6??isin6??cos2??isin2???02(2)因为sinz在复平面上处处解析,故由定理三得
45
?????i?isin2zdz??1?cos2z1?1??idz??z?sin2z???i22?2???i?i
1?11??????i?sin2?i???i?sin?2?i?2?22??11??2?i?sin2?i???i?1ish2?i?????sh2??i222??
(3)被积函数f?z??1ABA?z?1??Bz?A?B?z?A
????z?z?1?zz?1z?z?1?z?z?1??A?B?0???A?1解得A??1,B?1,故
111 ???2zz?1z?z被积函数的奇点在,z=0,z=1均在包含单位圆的闭曲线内,由柯西积分公式可得
dzdzdz????Cz2?zC?z?Cz?1??2?i?2?i?0
(4) 因为被积函数f?z??sinz的奇点z??i在曲C:z?i?3内,故由柯西积分公式得 z?isinzei??i??e?i??i???e?e?1 (5)被积函?Cz?idz?2?i?sinzz??i?2?i?sin??i??2?i2i??数f?z??1?z2?9?22的奇点z= -3i在曲线:z?2?2之外,z=3i在C之内,由高阶导数公式得
dz??zCdz2?9?2?z?3i?????22C?z?3i??z?3i?C?z?3i?2dz??1????2?i 2???2?3i??z?3i=?2?24??
?2?i??2?i??.21654?z?3i?3z?3i?6i?3 6、解 ?1?v?y,f?2??0 22x?y2xy?x方法一:?v???x2?y2?2x2?y2?y??2yx2?y2 ?v??22?yx2?y2x2?y2??????由于函数f?z?解析,所以满足柯西-黎曼方程。从而
?u?v2xy????y?xx2?y2??2
对y 进行偏积分,u?x,y????x2xy2?y22?dy?x?dx2?y2?x?2?y22????x?g?x? 2x?y22222由此式得?u???x?y??x?2x?g??x??x?y?g??x?,又因为
?x?x2?y2?2?x2?y2?2?u?vx2?y2x2?y2????g??x?222222?x?yx?yx?y????g??x??0,?g?x?=C
46
所以f?z???xyx?iy11
?C?i?C??C??C?x?itzx2?y2x2?y2x2?y2因为f?2??0,所以C?方法二:
1,故所求函数为f?z??1?1 22z?v?u?v?vx2?y22xyf??z???i??i??i2?y?y?y?xx2?y2x2?y2????2??x?x?iy?22?y22??1?1???x?iy???z2??2
因为f?2??0,所以C?1,故所求函数为f?z??1?1。 22z(3)u?2(x?1)y f(2)??i
方法一:
?u?u=2y, =2(x-1)由柯西-黎曼方程知 ?x?y?v?u?v ?u?? ??y?x?x?yv=?2ydy?y2?g(x)则?v?g'(x) (1)
?x?v?u????2(x?1) (2) ?x?y由(1)(2)得g'(x)?2?2x
g?x????2?2x?dx?2x?x?C v(x'y)?y2?2x?x2?c
?f(2)?u?iv?2(x?1)y?i(y2?2x?x2?c)
2??i[i2xy?i2y?x2?2z?y2?c] ??i[(x?iy)2?2(x?iy)?c]
??i[z2?2z?c]??i[(z?1)2]?(1?c)i?f(2)??i??i??i[(2?1)2?(1?c)i]??i[1?1?c] ?2?c?1?c??1
从而f(z)??i(z?1) 方法二:
2?u?u?2y ?2(x?1) ?x?yf'(z)?
?u?u?i?2y?i?2(x?1)???i(2x?2yi)?2i ?x?y47
??2i(x?iy)?i??2iz?2i 所以f(z)??iz2?2iz?c 因为f(z)??1
所以c??i从而f(z)??iz2?2iz?i??i(z2?2z?1)??i(z?1)2 注:方法二过程简单,但要将导函数凑成z的表达式,这一般有困难。
课后习题四
(6?5i)n51.(1)令zn? 因为 6?5i?61(cosn??isin?),??arctgn68??所以z??61?(cosn??isin?)
?8???nn61?且61又因为z??zn收敛 ???1所以n?8?8n?0??n??(6?5i)n所以?绝对收敛 n8n?0?cosin1eiin?e?iin1e?n?enen?e?n(2)令zn? ?n?n?nn?12222z21? ?1(e)n?1???
222?2e??1?收敛,故原级数发散 因为?1(e)n发散,这由于e?1 ;?1????n?0nn222n?02?2e?p2.(1)cn?1
pn cn?11?n???limn?lim??lim?1?pn??cn??n?1n?????1??1???n?故R?1?1
?2(2).cn??n!?
nncn?1[(n?1)!]2nn
??lim?limn??cn??(n?1)n?1?n!?2n22n ?lim(n?1)(n!)n?limn?1?limn?1
nnn??(n?1)n(n?1)?n!?2n??n???n?1??1????1???n??n? ??
故R?0
48
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库天津理工大学复变复习题解(留)(2)在线全文阅读。
相关推荐: