77范文网 - 专业文章范例文档资料分享平台

数学选修2-3人教A教案导学案:独立性检验的基本思想及其初步应用

来源:网络收集 时间:2018-12-01 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

3. 2.1独立性检验的基本思想及其初步应用

教学目标

(1)通过对典型案例的探究,了解独立性检验(只要求2?2列联表)的基本思想、方

法及初步应用;

(2)经历由实际问题建立数学模型的过程,体会其基本方法。 教学重点:独立性检验的基本方法 教学难点:基本思想的领会及方法应用 教学过程 一、问题情境

5月31日是世界无烟日。有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题:

某医疗机构为了了解肺癌与吸烟是否有关,进行了一次抽样调查,共调查了9965个人,其中吸烟者2148人,不吸烟者7817人。调查结果是:吸烟的2148人中有49人患肺癌,2099人未患肺癌;不吸烟的7817人中有42人患肺癌,7775人未患肺癌。

问题:根据这些数据能否断定“患肺癌与吸烟有关”? 二、学生活动

(1)引导学生将上述数据用下表(一)来表示:(即列联表)

不患肺癌 患肺癌 总计 1

不吸烟 吸烟 总计 7775 2099 9874 42 49 91 7817 2148 9965 (2)估计吸烟者与不吸烟者患肺癌的可能性差异: 42

在不吸烟者中,有 ≈0.54%的人患肺癌;

7817在吸烟的人中,有

49

≈2.28%的人患肺癌。 2148

问题:由上述结论能否得出患肺癌与吸烟有关?把握有多大? 三、建构数学

1、从问题“吸烟是否与患肺癌有关系”引出独立性检验的问题,借助样本数据的列联表,柱形图和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系。但这种结论能否推广到总体呢?要回答这个问题,就必须借助于统计理论来分析。 2、独立性检验:

(1)假设H0:患肺癌与吸烟没有关系。即:“吸烟与患肺癌相互独立”。用A表示不吸烟,B表示不患肺癌,则有P(AB)=P(A)P(B)

若将表中“观测值”用字母代替,则得下表(二):

吸烟 不吸烟 合计 患肺癌 未患肺癌 合计 a b d b?d a?b c?d a?b?c?d c a?c 学生活动:让学生利用上述字母来表示对应概率,并化简整理。 思考交流:|ad?bc|越小,说明患肺癌与吸烟之间的关系越 (强、弱)?

n(ad?bc)2(2)构造随机变量K?(其中n?a?b?c?d)

(a?b)(c?d)(a?c)(b?d)2由此若H0成立,即患肺癌与吸烟没有关系,则K的值应该很小。把表中的数据代入计算得

2

K的观测值k约为56.632,统计学中有明确的结论,在H0成立的情况下,随机事件P(K

2

2

≥6.635)≈0.01。由此,我们有99%的把握认为H0不成立,即有99%的把握认为“患肺癌与吸烟有关系”。

上面这种利用随机变量K来确定是否能以一定把握认为“两个分类变量有关系”的方法,称为两个分类变量的独立性检验。

说明:估计吸烟者与不吸烟者患肺癌的可能性差异是用频率估计概率,利用K进行独立性检验,可以对推断的正确性的概率作出估计,观测数据a,b,c,d取值越大,效果越好。在实际应用中,当a,b,c,d均不小于5,近似的效果才可接受。

(2)这里所说的“患肺癌与吸烟有关系”是一种统计关系,这种关系是指“抽烟的人患肺癌的可能性(风险)更大”,而不是说“抽烟的人一定患肺癌”。

2

2

2

(3)在假设H0成立的情况下,统计量K应该很小,如果由观测数据计算得到K的观测值很大,则在一定程度上说明假设不合理(即统计量K越大,“两个分类变量有关系”的可能性就越大)。

3、对于两个分类变量A和B,推断“A和B有关系”的方法和步骤为:

①利用三维柱形图和二维条形图; ②独立性检验的一般步骤:

第一步,提出假设H0:两个分类变量A和B没有关系; 第二步,根据2×2列联表和公式计算K统计量; 第三步,查对课本中临界值表,作出判断。 4、独立性检验与反证法:

反证法原理:在一个已知假设下,如果推出一个矛盾,就证明了这个假设不成立; 独立性检验原理:在一个已知假设下,如果一个与该假设矛盾的小概率事件发生,就

推断这个假设不成立。

四、数学运用

例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?

① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;

第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果; 第三步:由学生计算出K2的值; 第四步:解释结果的含义.

② 通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广. 变式练习:课本P97练习

【板书设计】:

【作业布置】:课本P97习题3.2第1题

2

2

22

3

3.2.1独立性检验的基本思想及其初步应用

课前预习

阅读教材P91-P95,了解相关概念,如:分类变量、列联表、独立性检验。 学习目标

(1)通过对典型案例的探究,了解独立性检验(只要求2?2列联

表)的基本思想、方法及初步应用;

(2)经历由实际问题建立数学模型的过程,体会其基本方法。 学习重点:独立性检验的基本方法 学习难点:基本思想的领会 学习过程 一、情境引入

5月31日是世界无烟日。有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题:

某医疗机构为了了解肺癌与吸烟是否有关,进行了一次抽样调查,共调查了9965个人,其中吸烟者2148人,不吸烟者7817人。调查结果是:吸烟的2148人中有49人患肺癌,2099人未患肺癌;不吸烟的7817人中有42人患肺癌,7775人未患肺癌。

问题:根据这些数据能否断定“患肺癌与吸烟有关”? 二、学生活动 【自主学习】

(1)将上述数据用下表(一)来表示:

不吸烟 吸烟 总计 不患肺癌 患肺癌 总计 (2)估计吸烟者与不吸烟者患肺癌的可能性差异: 在不吸烟者中患肺癌的人约占多大比例? ;

4

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库数学选修2-3人教A教案导学案:独立性检验的基本思想及其初步应用在线全文阅读。

数学选修2-3人教A教案导学案:独立性检验的基本思想及其初步应用.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/328414.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: