77范文网 - 专业文章范例文档资料分享平台

曲线积分与曲面积分重点总结+例题

来源:网络收集 时间:2018-12-01 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

高等数学教案 曲线积分与曲面积分

第十章 曲线积分与曲面积分

【教学目标与要求】

1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2.掌握计算两类曲线积分的方法。

3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数。 4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。

【教学重点】

1.两类曲线积分的计算方法; 2.格林公式及其应用;

3. 第一类曲面积分的计算方法;

【教学难点】

1.两类曲线积分的关系及第一类曲面积分的关系; 2.对坐标的曲线积分与对坐标的曲面积分的计算; 3.应用格林公式计算对坐标的曲线积分; 6.两类曲线积分的计算方法;

7.格林公式及其应用格林公式计算对坐标的曲线积分;

【参考书】

[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社.

[2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

§11.1 对弧长的曲线积分

一、 对弧长的曲线积分的概念与性质 曲线形构件的质量?

设一曲线形构件所占的位置在xOy面内的一段曲线弧L上? 已知曲线形构件在点(x? y)处的线密度为?(x? y)? 求曲线形构件的质量?

把曲线分成n小段? ?s1? ?s2? ? ? ?? ?sn(?si也表示弧长)? 任取(?i ? ?i)??si? 得第i小段质量的近似值?(?i ? ?i)?si?

高等数学课程建设组

高等数学教案 曲线积分与曲面积分

整个物质曲线的质量近似为M???(?i,?i)?si?

i?1n 令??max{?s1? ?s2? ? ? ?? ?sn}?0? 则整个物质曲线的质量为 M?lim??(?i,?i)?si?

??0i?1n 这种和的极限在研究其它问题时也会遇到?

定义 设函数f(x? y)定义在可求长度的曲线L上? 并且有界?,将L任意分成n个弧段? ?s1? ?s2? ? ? ?? ?sn? 并用?si表示第i段的弧长? 在每一弧段?si上任取一点(?i? ?i)? 作和

?f(?i,?i)?si? 令??max{?s1? ?s2? ? ? ?? ?sn}? 如果当??0时? 这和的极限总存在? 则称此

i?1n极限为函数f(x? y)在曲线弧L上对弧长的 曲线积分或第一类曲线积分? 记作

?Lf(x,y)ds? 即

n

lim?f(?i,?i)?si? ?Lf(x,y)ds???0i?1其中f(x? y)叫做被积函数? L 叫做积分弧段?

曲线积分的存在性? 当f(x? y)在光滑曲线弧L上连续时? 对弧长的曲线积分

?Lf(x,y)ds是存在的? 以后我们总假定f(x? y)在L上是连续的?

根据对弧长的曲线积分的定义?曲线形构件的质量就是曲线积分中?(x? y)为线密度?

对弧长的曲线积分的推广?

?L?(x,y)ds的值? 其

lim?f(?i,?i,?i)?si? ??f(x,y,z)ds???0i?1n 如果L(或?)是分段光滑的? 则规定函数在L(或?)上的曲线积分等于函数在光滑的各段上的曲线积分的和? 例如设L可分成两段光滑曲线弧L1及L2? 则规定

?L?L12f(x,y)ds??f(x,y)ds??f(x,y)ds?

L1L2 闭曲线积分? 如果L是闭曲线? 那么函数f(x? y)在闭曲线L上对弧长的曲线积分记作

?Lf(x,y)ds?

高等数学课程建设组

高等数学教案 曲线积分与曲面积分

对弧长的曲线积分的性质? 性质1 设c1、c2为常数? 则

?L[c1f(x,y)?c2g(x,y)]ds?c1?Lf(x,y)ds?c2?Lg(x,y)ds?

性质2 若积分弧段L可分成两段光滑曲线弧L1和L2? 则

?Lf(x,y)ds??Lf(x,y)ds??L1f(x,y)ds?

2 性质3设在L上f(x? y)?g(x? y)? 则 特别地? 有

|?Lf(x,y)ds??Lg(x,y)ds? ?Lf(x,y)ds|??L|f(x,y)|ds

二、对弧长的曲线积分的计算法

根据对弧长的曲线积分的定义? 如果曲线形构件L的线密度为f(x? y)? 则曲线形构件L的质量为

?Lf(x,y)ds?

x??(t)? y?? (t) (??t??)?

另一方面? 若曲线L的参数方程为 则质量元素为

f(x,y)ds?f[?(t), ?(t)]曲线的质量为 即

??2(t)???2(t)dt?

???f[?(t), ?(t)]??2(t)???2(t)dt?

f(x,y)ds??f[?(t), ?(t)]??2(t)???2(t)dt?

???L 定理 设f(x? y)在曲线弧L上有定义且连续? L的参数方程为 x??(t)? y??(t) (??t??)? 其中?(t)、?(t)在[?? ?]上具有一阶连续导数? 且??2(t)???2(t)?0? 则曲线积分在? 且

应注意的问题? 定积分的下限?一定要小于上限??

高等数学课程建设组

?Lf(x,y)ds存

?Lf(x,y)ds??f[?(t),?(t)]??2(t)???2(t)dt(?

??高等数学教案 曲线积分与曲面积分

讨论?

(1)若曲线L的方程为y??(x)(a?x?b)? 则提示? L的参数方程为x?x? y??(x)(a?x?b)?

?Lf(x,y)ds??

?Lf(x,y)ds??f[x,?(x)]1???2(x)dx?

ab (2)若曲线L的方程为x??(y)(c?y?d)? 则提示? L的参数方程为x??(y)? y?y(c?y?d)?

?Lf(x,y)ds??

?Lf(x,y)ds??f[?(y),y]??2(y)?1dy?

cd (3)若曲?的方程为x??(t)? y??(t)? z??(t)(??t??)? 则

??f(x,y,z)ds??

提示?

??f(x,y,z)ds??f[?(t),?(t),?(t)]??2(t)???2(t)???2(t)dt?

?? 例1 计算

?Lyds? 其中L是抛物线y?x2上点O(0? 0)与点B(1? 1)之间的一段弧?

解 曲线的方程为y?x2 (0?x?1)? 因此

?L11yds??x21?(x2)?2dx??x1?4x2dx?1(55?1)?

0012 例2 计算半径为R、中心角为2?的圆弧L对于它的对称轴的转动惯量I(设线密度为

??1)?

解 取坐标系如图所示? 则I??Ly2ds? 曲线L的参数方程为

x?Rcos?? y?Rsin? (????

??? ?R3???sin2?d??R(??sin? cos?)?

3

? 例3 计算曲线积分

??(x2?y2?z2)ds? 其中?为螺旋线x?acost、y?asint、z?kt上相应

于t从0到达2?的一段弧?

解 在曲线?上有x2?y2?z2?(a cos t)2?(a sin t)2?(k t)2?a2?k 2t 2? 并且 ds?(?asint)2?(acost)2?k2dt?a2?k2dt?

高等数学课程建设组

高等数学教案 曲线积分与曲面积分

于是

?22z2)ds??2??(x?y?0(a2?k2t2)a2?k2dt

?23?a2?k2(3a2?4?2k2)?

小结

用曲线积分解决问题的步骤? (1)建立曲线积分?

(2)写出曲线的参数方程 ( 或直角坐标方程) ? 确定参数的变化范围? (3)将曲线积分化为定积分?

(4)计算定积分?

教学方式及教学过程中应注意的问题

在教学过程中要注意曲线积分解决问题的步骤,要结合实例,反复讲解。

师生活动设计

1.已知椭圆L:x2y2??1周长为a,求?(2xy?3x2?4y243)ds。 L2.设C是由极坐标系下曲线r?a,??0及???4所围成区域的边界,I??ex2?y2ds

C讲课提纲、板书设计

作业 P190: 3(1)(3)(5)(7)

高等数学课程建设组

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库曲线积分与曲面积分重点总结+例题在线全文阅读。

曲线积分与曲面积分重点总结+例题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/328395.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: