NBA赛程的制定和评价的数学模型
(2008高教社杯全国大学生数学建模竞赛题目D题)
太原理工大学 数学系 信计0802 姓名:张海涛 学号:2008003624
题目:NBA是全世界篮球迷们最钟爱的赛事之一,姚易加盟以后更是让中国球迷宠爱
有加。NBA共有30支球队,西部联盟、东部联盟各15支,大致按照地理位置,西部分西南、西北和太平洋3个区,东部分东南、中部和大西洋3个区,每区5支球队。对于2008~2009新赛季,常规赛阶段从2008年10月29日(北京时间)直到2009年4月16日,在这5个多月中共有1230场赛事,每支球队要进行82场比赛,附件1是30支球队2008~2009赛季常规赛的赛程表,附件2是分部、分区和排名情况(排名是2007~2008赛季常规赛的结果),见http://sports.sina.com.cn/nba/ 。
对于NBA这样庞大的赛事,编制一个完整的、对各球队尽可能公平的赛程是一件非常复杂的事情,赛程的安排对球队实力的发挥和战绩有一定的影响,从报刊上经常看到球员、教练和媒体对赛程的抱怨或评论。这个题目主要是要求用数学建模方法对已有的赛程进行定量的分析与评价:
1)为了分析赛程对某一支球队的利弊,你认为有哪些要考虑的因素,根据这些因素将赛程转换为便于进行数学处理的数字格式,并给出评价赛程利弊的数量指标。
2)按照1)的结果计算、分析赛程对姚明加盟的火箭队的利弊,并找出赛程对30支球队最有利和最不利的球队。
3)分析赛程可以发现,每支球队与同区的每一球队赛4场(主客各2场),与不同部的每一球队赛2场(主客各1场),与同部不同区的每一球队有赛4场和赛3场(2主1客或2客1主)两种情况,每支球队的主客场数量相同且同部3个区的球队间保持均衡。试根据赛程找
出与同部不同区球队比赛中,选取赛3场的球队的方法。这种方法如何实现,对该方法给予评价,也可以给出你认为合适的方法。
【摘要】 本文主要以评价NBA赛程安排的利弊及找出其安排方法为研究
对象,在研究过程中建立了评价模型和非线性0-1规划模型,利用了lingo编程求解。
对于问题一,主要通过考虑赛程安排对球队体能、士气和精神的影响,从中找出分析赛程利弊的主要因素为:相邻两场比赛间隔时间、比赛的主客场情况、比赛对手实力、比赛具体时间和两场比赛场地间距离。将赛程转换为数字格式时,利用“目标---手段”分析法和极差处理法对影响赛程利弊的各因素分类进行量化处理,具体转换结果见问题一求解。在给出评价赛程利弊的数量指标时,通过模糊决策方法,定义上述主要影响因素为评价赛程利弊的准则,并利用层次分析法确定各准则对目标的权重,从而建立判断赛程安排利弊的综合评价模型,对模型求解可以得到30支球队08-09赛季的有利场次数及平均有利程度,对两者统一量纲加权求和得到每支球队赛程安排的评价值,并定义其为评价赛程安排利弊的数量指标,其中评价值越大则赛程安排越有利,反之则越不利。
对于第二问,根据问题一求解出的数量指标,得到该赛季的赛程对火箭队较有利,其中2月和4月份的赛程对火箭队最有利,11月和3月的赛程最不利,且08-09赛季的赛程对尼克斯,超音速,小牛三支球队最有利,对国王,快船,开拓者三支球队最不利。
对于第三问,通过对同部不同区赛程安排的分析,从中发现规律:同部15支球队赛三场和赛四场的对手实力平均值皆保持基本均衡。据此给出选取赛3场球队的方法为:选取时要使同部15支球队基本满足上述规律,并且每支球队都应与不同区的各2支球队进行赛三场的比赛,且每支球队赛3场的比赛场次数应等于12场。在满足上述条件的同时还应满足选取与被选取的球队间赛程保持对应,并以所得规律为目标,建立非线性0-1规划模型,并利用lingo编程求解,从而对该方法付诸实现,结果见模型求解,通过对求解出的安排与题目给出的实际安排进行一致性比较,说明该方法与题目中给出的方法接近程度较大。定义对手实力、有利场次数和比赛有利程度为评价选取方法的准则,从而给出对该方法的综合评价详见模型求解。从各球队有利比赛场次数保持均衡考虑,给出了我们认为合适的选取方法,并利用上述准则进行了评价,详见文中。
在问题一评价07—08赛季赛程的合理性和公平性时,本文首先将赛程表的信息存放于矩阵中,然后通过设计算法从矩阵中求取所需信息,得到了各队的客场比赛数,背靠背比赛数等一系列影响合理性和公平性的因素。同时将球迷对赛程表的评价作为评价赛程表合理性的一部分,并且通过定义赛季主客场满意度,比赛精彩系数等指标将赛程的合理性和公平性量化。利用MATLAB软件计算出07—08赛季的各指标值:公平性系数为0.975,精彩系数0.1455,07—08赛季赛程的综合评定为0.5602,该赛程符合NBA的比赛规定。
在问题二中,首先我们将 定义为一种比赛双方的对阵组合, 表示队客场挑战 队。通过函数将对阵的情况数值化。在问题一的基础上,考虑了各队主客场数的平衡,背靠背比赛数的范围,各区各联盟间各队比赛场数的约束及精彩系数的最大化,综合各项指标设计出了算法排出了08—09赛季的赛程表,并用问题一中所建立的评价赛程表合理性和公平性的数学模型对
设计出的08—09赛季的赛程表作出评价,得到了结论。公平性系数为0.825,精彩系数0.1630,08—09赛季赛程的综合评定为0.4940。
关键词:量化分析 赛表生成算法 合理性和公平性 NBA赛程的制定和评价
一、问题的重述
一个合理的赛程表是NBA能够精彩上演的保证。维尼克主要负责每支球队的具体赛程的制定,但是无论维尼克如何做,总有一些球队在抱抱怨,他只能尽量使得赛程安排公平合理。维尼克每个赛季给一支球队定的背靠背上限是24对,下限是15对。另外,考虑到比赛的观赏性等其他一些因素,由于历史原因,有些球队之间的比赛会格外引人注目,同样的,球队内的球星也可能成为影响赛程安排的因素,此外,一些节日比赛安排会有所不同,很明显周末比赛相对紧密,而每个星期天似乎都会有一场精彩的比赛,再比如每年的圣诞大战。所有这些都在一定程度上增加了比赛安排的复杂性。要求:对NBA 2007-2008赛季常规赛赛程的安排,讨论其合理性和公平性。根据问题(1)得出的模型与结论,给出NBA常规赛赛程安排模型,并制定NBA 2008-2009 赛季的常规赛赛程,并给出评价。
二、模型的基本假设
1、假设考察一个赛程安排是否合理主要考虑下面这三个因素:是否满足赛制的要求,球队的满意度,球迷的满意度。
2、假设个球队的排名情况和拥有的球星数能够说明该队的受关注程度。 3、假设各球队对赛程的满意度仅取决于对“主客场数”和“背靠背数”的满意度。 4、假设球迷对赛程的满意程度主要取决于重要比赛的安排时间。
5、假设08—09季度的比赛每个周末比赛日的比赛场数固定,非周末比赛日比赛场数大体相等。
6、假设在对08—09赛季的赛程安排时,只考虑节假日里不安排比赛,不考虑其他因素的比赛的影响。
三、符号说明
符号表示的意义
记录2007—2008赛季各场比赛信息的 的矩阵 存储个球队在2007—2008赛季客场比赛数的数组 存储各球队在2007—2008赛季背靠背比赛数的数组 记录30支球队再2007—2008赛季排名信息的 的矩阵
第 队与第 队到第 天为止,队为主场, 队为客场的两队的交锋次数 和的不分主客场的交锋次数
描述对阵形势及对应对阵形势下比赛场数的矩阵 队客场挑战队的对阵形式
队和 队在这种对阵形式下进行的对赛场数 队和队比赛的精彩系数
每个赛季的比赛观赏系数与每场比赛观赏性系数的和球队对主客场数的满意度 球队对背靠背数的满意度 第支球队的整体实力系数
第支球队的打比赛时的精彩系数
将 队客场挑战队这场比赛映射为一个数值的函数
四、问题的分析和模型的建立
问题一模型建立
对于每个赛程的合理性和公平性,可由下面3个主要因素来衡量: l 四条硬性的要求
1)每个分区的球队在常规赛中要与在同一个分的球队比赛四场
2)分区的每支球队要与分区以外,但是在同在一个大赛区的每个球队相遇三到四次 3)小赛区的每支球队要与不同大赛区的每支球队比赛两场 4)共用同一个比赛场馆的球队的主场比赛不能在同一天进行。 l 球队从自身利益出发对赛程的满意程度
l 观众对赛程的满意程度,尤其表现在对某些重要比赛的时间安排上 1、对2007—2008赛季的赛程安排关于四条硬性要求的检验 各球队的分区情况如表一所示: 东部赛区 西部赛区 大西洋分赛区 太平洋分赛区 波士顿凯尔特人 1 洛杉矶湖人 16 新泽西 2 萨克拉门托国王 17 纽约尼克斯 3 菲尼克斯太阳 18 费城76人 4 金州勇士 19 多伦多猛龙 5 洛杉矶快船 20 中央分赛区 西北分赛区 底特律活塞 6 明尼苏达森林狼 21 印第安纳步行者 7 犹他爵士 22 密尔沃基雄鹿 8 丹佛掘金 23 芝加哥公牛 9 波特兰开拓者 24 克里夫兰骑士 10 西雅图超音速 25 东南分赛区
西南分赛区
迈阿密热火 11 新奥尔良黄蜂 26 奥兰多魔术 12 达拉斯小牛 27 华盛顿奇才 13 圣安东尼奥马刺 28 亚特兰大老鹰 14 休斯敦火箭 29 夏洛特山猫 15 孟菲斯灰熊 30 题目中给出的常规赛赛制为:
1)每个小赛区的球队在常规赛中要与在同一个小赛区的球队比赛四场。
2)分赛区的每支球队要与分赛区以外,但是在同在一个大赛区的每个球队相遇三到四次。 3)小赛区的每支球队要与不同大赛区的每支球队比赛两场。 因此我们可以得到:每个球队的比赛场数为: 1 .1分区内赛程安排检验
一共有6个赛区,各赛区内球队的编号分别为: 大西洋分赛区:1—5 中央分赛区: 6—10 东南分赛区: 11—15 太平洋分赛区:16—20 西北分赛区: 21—25 西南分赛区: 26—30
在讨论赛程的合理性和公平性时,必须要对每支球队在分赛区的赛程安排进行检验。要求每个分赛区的球队在常规赛中要与在同一个分赛区的球队比赛四场。 1.2同赛区不同分区的赛程安排检验
在讨论赛程的合理性和公平性时,必须要对每支球队在同一赛区不同分区的赛程安排进行检验。要求分赛区的每支球队要与分赛区以外,但是在同在一个大赛区的每支球队相遇三到四次。
如:编号为1—5的球队与编号为6—10的球队就属于同赛区不同分区的情况。则编号为1—5内的每个球队需要与编号为6—10内的每个球队比赛3—4场。 1.3不同赛区内的赛程安排检验
在讨论赛程的合理性和公平性时,还需要对每支球队在不同赛区的赛程安排进行检验。要求小赛区的每支球队要与不同大赛区的每支球队比赛两场。
如:编号为1—15的球队与编号为16—30的球队就属于不同大赛区的情况。编号为1—15内的球队需要与编号为16—30的球队比赛两场。
只有当一个赛程的安排同时满足上面的三个条件时,该赛程才符合了赛程安排的基本要求,才能够进一步进行合理性和公平性的分析。 2、球队对赛程的满意程度的评价
对于一个确定的赛程,球队就有确定的主客场数、背靠背数、连续客场作战数等,而球队会从自身利益出发对自己的赛程做出评价,一个合理公平的赛程能够最大程度减少各球队的抱怨。也就是使各球队的主客场数、背靠背数、连续客场作战数都大致相等。
2.1为了对球队的满意程度进行量化分析,我们首先需要对给出的附录(07—08赛季赛程安排)进行处理和记录。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库NBA赛程的制定和评价的数学模型在线全文阅读。
相关推荐: