77范文网 - 专业文章范例文档资料分享平台

特殊平行四边形拔高题含答案

来源:网络收集 时间:2018-11-30 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

第II卷(非选择题)

一、解答题(题型注释)

1.如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足-(a-4)≥0,c?b?2?2?b?8

2

(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;

(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由; 点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求

PC的值 BM

2.如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=3,OC=2,P是BC边上一点且不与B重合,连结AP,过点P作∠CPD=∠APB,交x轴于点D,交y轴于点E,过点E作EF∥AP交x轴于点F. (1)若△APD为等腰直角三角形,求点P的坐标;

(2)若以A,P,E,F为顶点的四边形是平行四边形,求直线PE的解析式.

3.把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.

(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接 写出结论;

(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

试卷第1页,总8页

ADAFNBEMDENCBMCF

图1 图2

4.如图,已知正方形ABCD,AC、BD相交于点O,E为AC上一点,AH⊥EB交EB于点H,AH交BD于点F. (1)若点E在图1的位置,判断OE与OF的数量关系,并证明你的结论;

(2)若点E在AC的延长线上,请在图2中按题目要求补全图形,判断OE与OF的数量关系,并证明你的结论.

5.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.

(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;

(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;

(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可). 6.阅读下列材料:

已知:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及此时

AP的值是多少. AC试卷第2页,总8页

在解决这个问题时,小明联想到在学习平行线间的距离时所了解的知识:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.进而,小明构造出了如图2的辅助线,并求得PQ的最小值为3.参考小明的做法,解决以下问题:

(1)继续完成阅读材料中的问题:当PQ的长度最小时,

AP= ; AC(2)如图3,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PB为边作□PBQE,那么对角线PQ的最小值为 ,此时

AP= ; ACAP= . AC(3)如图4,如果P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数),以PE,PC为边作□PCQE,那么对角线PQ的最小值为 ,此时

7.在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上. (1)如图1,△ABC和△APE均为正三角形,连接CE. ①求证:△ABP≌△ACE.

②∠ECM的度数为 °.

(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为 °. ②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为 °.

(3)如图4,n边形ABC?和n边形APE?均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.

8.已知O是坐标原点,点A的坐标是(5,0),点B是y轴正半轴上一动点,以OB,OA为边作矩形OBCA,点E,

试卷第3页,总8页

H分别在边BC和边OA上,将△BOE沿着OE对折,使点B落在OC上的F点处,将△ACH沿着CH对折,使点A落在OC上的G点处。

(1)求证:四边形OECH是平行四边形;

(2)当点B运动到使得点F,G重合时,求点B的坐标,并判断四边形OECH是什么四边形?说明理由; (3)当点B运动到使得点F,G将对角线OC三等分时,求点B的坐标。

9.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题. 习题解答: 习题 如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由. 解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,

∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上. ∴∠E′AF=90°﹣45°=45°=∠EAF, 又∵AE′=AE,AF=AF

∴△AE′F≌△AEF(SAS) ∴EF=E′F=DE′+DF=BE+DF. 习题研究

观察分析:观察图(1),由解答可知,该题有用的条件是①ABCD是四边形,点E、F分别在边BC、CD上;②AB=AD;③∠B=∠D=90°;④∠EAF=

1∠BAD. 2类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗? 研究一个问题,常从特例入手,请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?

(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180,∠EAF=

1∠BAD时,EF=BE+DF吗? 2归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题: 在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180,∠EAF=∠BAD时,则EF=BE+DF .

10.提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE

试卷第4页,总8页

分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.

学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了. 解决问题:请你选择上述一种方法给予证明.

问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.

11.操作发现

将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合. 问题解决

将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②. (1)求证:△CDO是等腰三角形; (2)若DF=8,求AD的长.

12.我们知道平行四边形有很多性质.

现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论. 【发现与证明】ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D. 结论1:B′D∥AC;

结论2:△AB′C与ABCD重叠部分的图形是等腰三角形. ??

请利用图1证明结论1或结论2(只需证明一个结论).

【应用与探究】在ABCD中,已知∠B=30°,将△ABC沿AC翻折至△AB′C,连结B′D. (1)如图1,若AB?3, ?AB?D?750,则∠ACB= °,BC= ; (2)如图2,AB?23,BC=1,AB′与边CD相交于点E,求△AEC的面积; (3)已知AB?23,当BC长为多少时,是△AB′D直角三角形?

试卷第5页,总8页

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库特殊平行四边形拔高题含答案在线全文阅读。

特殊平行四边形拔高题含答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/323875.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: