H11(?)?18000?(1?1?280)?4?(0.004)?22?2?22500?(1?1?280125)?4?(0.0062)?22?2
125(5.1)
编写Matlab程序figure1.m画图,程序如下:
omega=5:.01:15;
o1=omega/sqrt(80); o2=omega/sqrt(125); k1=18000; k2=22500; xi1=0.0040; xi2=0.0062;
y11=1./(k1.*sqrt((1-o1.^2).^2+(2.*xi1.*o1).^2))+1./(k2.*sqrt((1-o2.^2).^2
+(2.*xi2.*o2).^2));
plot(omega,y11,'LineWidth',2); grid on
xlabel('频率 Hz') ylabel('幅值 mm') title('m1的一阶幅频特性')
输出图形:
2)H11(?)的相频特性曲线:?11与?的关系
?11?arctan???2?1?1???2?2?2??arctan。代入可得: ?2?2??1??1??1??2?6
?11???2?0.004??8.9453?arctan?2??1??80?????2?0.0062???11.1791??arctan?2???1???125????? (5.2) ??? 编写Matlab程序figure2.m画图,程序如下:
omega=5:.01:15;
o1=omega/sqrt(80); o2=omega/sqrt(125); k1=18000; k2=22500; xi1=0.0040; xi2=0.0062;
y11=atan((-2.*xi1.*o1)./(1-o1.^2))+atan((-2.*xi2.*o2)./(1-o2.^2)); plot(omega,y11,'LineWidth',2); axis([5 15 -2 2]) grid on
xlabel('频率 Hz') ylabel('相位角') title('m1的一阶相频特性')
输出图形:
3)H11(?)的实频特性曲线:H11(?)与?的关系
H(?)?k1R11R1??12??1??21?2?4??2121??k21??22??1??22?2?4??2222?。代入可得:
7
1?H(?)?R112?280????1??2?2125 (5.3)
22?????218000???1???4?(0.004)???80?80?22??????2?22500???1???4?(0.0062)???125?125???编写Matlab程序figure3.m画图,程序如下:
omega=5:.01:15;
o1=omega/sqrt(80); o2=omega/sqrt(125); k1=18000; k2=22500; xi1=0.0040; xi2=0.0062;
y11=(1-o1.^2)./(k1.*((1-o1.^2).^2+(2.*xi1.*o1).^2))+(1-o2.^2)./(k2.*((1-o
2.^2).^2+(2.*xi2.*o2).^2));
plot(omega,y11,'LineWidth',2); grid on
xlabel('频率 Hz') ylabel('幅值 mm') title('m1的一阶实频特性')
输出图形:
4)H11(?)的虚频特性曲线:H11(?)与?的关系
H11(?)?k1II?2?1?1??1??21?2?4??2121??k2?2?2?2??1??22?2?4??2222?。代入可得:
8
?2?0.004?H11(?)?I2?8.9453??2?0.0062?2?11.1791 (5.4)
22??????2?18000???1???4?(0.004)???80?80???22??????2?22500???1???4?(0.0062)???125?125??? 编写Matlab程序figure4.m画图,程序如下:
omega=5:.01:15;
o1=omega/sqrt(80); o2=omega/sqrt(125); k1=18000; k2=22500; xi1=0.0040; xi2=0.0062;
y11=(1-o1.^2)./(k1.*((1-o1.^2).^2+(2.*xi1.*o1).^2))+(1-o2.^2)./(k2.*((1-o
2.^2).^2+(2.*xi2.*o2).^2));
plot(omega,y11,'LineWidth',2);
axis ([5 15 -0.0035 0.0005])
grid on
xlabel('频率 Hz') ylabel('幅值 mm')
title('m1的一阶虚频特性')
输出图形:
5)H11(?)的导纳图:H11(?)与H11(?)的关系
编写Matlab程序figure5.m画图,程序如下:
omega=0:.01:15;
o1=omega/sqrt(80); o2=omega/sqrt(125); k1=18000; k2=22500; xi1=0.0040; xi2=0.0062;
yR=(1-o1.^2)./(k1.*((1-o1.^2).^2+(2.*xi1.*o1).^2))+(1-o2.^2)./(k2.*((1-o2
.^2).^2+(2.*xi2.*o2).^2));
yI=(-2.*xi1.*o1)./(k1.*((1-o1.^2).^2+(2.*xi1.*o1).^2))+(-2.*xi2.*o2)./(k2
.*((1-o2.^2).^2+(2.*xi2.*o2).^2));
9
RIplot(yR,yI,'LineWidth',2); axis square grid on
xlabel('实频幅值 mm') ylabel('虚频幅值 mm')
title('m1的一阶Nyquist图')
输出图形:
6)H11(?)的博德图:lgH11(?)与lg?的关系 编写Matlab程序figure6.m画图,程序如下:
omega=5:.01:15;
o1=omega/sqrt(80); o2=omega/sqrt(125); k1=18000; k2=22500; xi1=0.0040; xi2=0.0062;
y11=log(1./(k1.*sqrt((1-o1.^2).^2+(2.*xi1.*o1).^2))+1./(k2.*sqrt((1-o2.^2
).^2+(2.*xi2.*o2).^2)));
plot(log(omega),y11,'LineWidth',2); grid on
xlabel('频率取对数') ylabel('幅值取对数') title('m1的一阶Bode图')
输出图形:
10
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库机械模态分析作业例题(2)在线全文阅读。
相关推荐: