77范文网 - 专业文章范例文档资料分享平台

九年级数学综合练习一_3

来源:网络收集 时间:2018-11-13 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

九年级数学综合练习一

一、选择题(共8道小题,每小题4分,共32分) 1.-2的相反数等于( ). A.2

B.-2

C.

1 2D.?1 22.2009年,全国普通高校本、专科共计划招生6290000人,将6290000用科学记数法表示应为( ). A.6.29×105 B.62.9×105 C.6.29×106 D.0.629×107 3.下图是由五个相同的小正方体搭成的几何体,它的主视图是( )

4.若一个多边形的内角和为1080°,则这个多边形的边数为( ). A.5 B.6 C.7 D.8

5.2004~2008年社会消费品零售总额及增长速度情况如图所示,那么社会消费品零售总额比上年增长最快的年份是( ).

A.2005年 B.2006年 C.2007年 D.2008年

6.如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于( ).

A.110° B.100° C.80° D.70°

7.如图,在边长为1的等边三角形ABC中,若将两条含120°圆心角的则S与△ABC面积的比等于( ).

及边AC所围成的阴影部分的面积记为S,

A.

1 2B.

1 3C.

1 4D.

1 68.若m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a<b,则a、b、m、n的大小关系是( ). A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b 二、填空题(共4道小题,每小题4分,共16分) 9.在函数y?1中,自变量x的取值范围是______.

2x?410.若x?1?(y?4)2?0,则xy的值等于______.

11.如图,△ABC中,∠ABC的平分线交AC于E,BE⊥AC,DE∥BC交AB于D,若BC=4,则DE=______.

12.在Rt△ABC中,∠ACB=90°,BC<AC,若BC?AC?三、解答题(本题共30分,每小题5分)

1AB2则∠A=______°. 4113.计算:12?(3?π)0?()?1?2sin60?.

2

?2(x?1)?3?3x,?14.解不等式组?x?2在数轴上表示它的解集,并求它的整数解.

?4?x,??3

15.已知:如图,△ABC中,AB=AC,BC为最大边,点D、E分别在BC、AC上,BD=CE,F为BA延长线上一点,BF=

CD.求证:∠DEF=∠DFE.

16.解方程:

x2?1?2? x?2x?4

17.已知抛物线y=-x2+(m+2)x+3m-20经过点(1,-3),求抛物线与x轴交点的坐标及顶点的坐标.

18.已知:如图,在梯形ABCD中,AD∥BC,AB=AD=2,∠A=60°,BC=4.求CD的长.

四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分)

19.已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.

(1)判断直线BD与⊙O的位置关系,并证明你的结论; (2)若⊙O的半径等于4,tan?ACB?4,求CD的长. 3

20.有三个完全相同的小球,上面分别标有数字1、-2、-3,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一

次摸出球后放回摇匀),设第一次摸到的球上所标的数字为m,第二次摸到的球上所标的数字为n,依次以m、n作为点M的横、纵坐标.

(1)用树状图(或列表法)表示出点M(m,n)的坐标所有可能的结果; (2)求点M(m,n)在第三象限的概率. 21.某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公

司规定每辆车只能装同一种苹果,而且必须满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车. (1)设用x辆车装甲种苹果,y辆车装乙种苹果,求y与x之间的函数关系式,并写出自变量x的取值范围; (2)若运送三种苹果所获利润的情况如下表所示: 苹果品种 每吨苹果所获利润/万元 甲 0.22 乙 0.21 丙 0.2 设此次运输的利润为W(万元),问:如何安排车辆分配方案才能使运输利润W最大,并求出最大利润.

22.已知:如图,△ABC中,AC<AB<BC.

(1)在BC边上确定点P的位置,使∠APC=∠C.请画出图形,不写画法; (2)在图中画出一条直线l,使得直线l分别与AB、BC边交于点M、N,并且沿直线l将△ABC剪开后可拼成一个等腰梯形.请画出直线l及拼接后的等腰梯形,并简要说明你的剪拼方法. 说明:本题只需保留画图痕迹,无需尺规作图.

五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.已知:反比例函数y?与y?288和y?在平面直角坐标系xOy第一象限中的图象如图所示,点A在y?的图象上,AB∥y轴,xxx228的图象交于点B,AC、BD与x轴平行,分别与y?、y?的图象交于点C、D. xxx

(1)若点A的横坐标为2,求梯形ACBD对角线的交点F的坐标;

(2)若点A的横坐标为m,比较△OBC与△ABC面积的大小,并说明理由; (3)若△ABC与以A、B、D为顶点的三角形相似,请直接写出点A的坐标.

324.已知:如图,在平面直角坐标系xOy中,直线y??x?6与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对

4应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求点P的坐标;若不存在,说明理由;

(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA-QO|的取值范围.

25.已知:PA?2,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.

(1)如图,当∠APB=45°时,求AB及PD的长;

(2)当∠APB变化,且其他条件不变时,求PD的最大值,及相应∠APB的大小.

参考答案

九年级数学综合练习一

1.A. 2.C. 3.B. 4.D 5.D. 6.A. 7.B. 8.A. 9.x?-2. 10.1. 11.2. 12.15. 13.解:12?(3?π)?()?2sin60

012?1??23?1?2?2?3 ······························································ 4分 2··············································································· 5分 ?3?1 ·

?2(x?1)?3?3x,①?14.?x?2

?4?x,②??3由①得x?1. ················································································ 1分 由②得x?5. ··············································································· 2分

不等式组的解集在数轴上表示如下:

································· 3分

所以原不等式组的解集为1?x?5. ·················································· 4分 所以原不等式组的整数解为1,2,3,4. ············································ 5分 15.证明:如答图1,

答图1

∵AB=AC, ∴∠B=∠C. ················································································ 1分 在△BDF和△CED中, ?BD?CE,???B??C, ?BF?CD,?∴△BDF≌△CED. ········································································ 3分 ∴DF=ED. ·················································································· 4分 ∴∠DEF=∠DFE. ········································································ 5分 16.解:去分母,得x(x+2)-(x2-4)=2. ················································ 1分

去括号,得x2+2x-x2+4=2. ························································· 2分 整理,得2x=-2. ········································································· 3分 解得x=-1. ················································································ 4分 经检验,x=-1是原方程的解. ························································ 5分 17.解:∵抛物线y=-x2+(m+2)x+3m-20经过(1,-3)点,

∴-12+(m+2)+3m-20=-3. 整理,得4m-19=-3. 解得m=4. ·················································································· 1分 ∴二次函数的解析式为y=-x2+6x-8. ············································· 2分 令y=0,可得-x2+6x-8=0. 解得x1=2,x2=4. ········································································ 3分 ∴抛物线与x轴的交点坐标为(2,0),(4,0). ······································ 4分 ∵y=-x2+6x-8=-(x-3)2+1, ∴抛物线的顶点坐标为(3,1). ·························································· 5分 18.解:连结BD,作DE⊥BC于点E.(如答图2) ······································· 1分

答图2

∵AB=AD=2,∠A=60°,

∴△ABD为等边三角形,BD=2,∠ADB=60°. ································· 2分 ∵AD∥BC,

∴∠DBC=60°. ··········································································· 3分 在Rt△BDE中,∠BED=90°,∠DBE=60°,

∴DE=BD·sin60°=3,BE=BD·cos60°=1. ······························ 4分 在Rt△CDE中,∠CED=90°,CE=BC-BE=3,

······························································ 5分 ?CD?DE2?CE2?23. ·

解法二:作DE∥AB交BC于E,作EF⊥CD于F; 解法三:连结BD,并延长BA、CD交于E. 19.解:(1)直线BD与⊙O相切.

证明:如答图3,连结OB. ··················································· 1分

答图3

∵∠OCB=∠CBD+∠D,∠1=∠D, ∴∠2=∠CBD.

∵AB∥OC,∴∠2=∠A.∴∠A=∠CBD. ∵OB=OC,∴∠BOC+2∠3=180°. ∵∠BOC=2∠A,∴∠A+∠3=90°. ∴∠CBD+∠3=90°. ∴∠OBD=90°. ································································· 2分 ∴直线BD与⊙O相切. ························································· 3分 (2)解:∵∠D=∠ACB,tan?ACB?44···························· 4分 ,?tanD?. ·

334, 3在Rt△OBD中,∠OBD=90°,OB=4,tanD?4OB?sinD?,OD??5.

5sinD∴CD=OD-OC=1. ··························································· 5分

20.解:(1)组成的点M(m,n)的坐标的所有可能性为:

或列表如下:

第一次 第二次 1 -2 -3 1 (1,1) (1,-2) (1,-3) -2 (-2,1) (-2,-2) (-2,-3) -3 (-3,1) (-3,-2) (-3,-3) ··································································································· 3分

(2)落在第三象限的点有(-2,-2),(-2,-3),(-3,-2),(-3,-3),因此点M落在第三象限的概率为

21.解:(1)∵8x+10y+11(10-x-y)=100, ·············································· 1分

∴y与x之间的函数关系式为y=-3x+10. ······························· 2分 ∵y≥1,解得x≤3.

∵x≥1,10-x-y≥1,且x是正整数,

∴自变量x的取值范围是x=1或x=2或x=3. ·························· 3分 (2)W=8x×0.22+10y×0.21+11(10-x-y)×0.2=-0.14x+21. ········· 4分 因为W随x的增大而减小,所以x取1时,可获得最大利润, 此时W=20.86(万元). ··························································· 5分

获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果. 6分

22.解:(1)答案见答图4(任选一种即可). ················································· 2分

4. 59

答图4

(2)答案见答图5. ····································································· 3分

答图5

剪拼方法:取AB的中点M,过点M作AP的平行线l,与BC交于点N,过点A作BC的平行线,与l交于点H,将△BMN绕点M顺时针旋转180°到△AMH,则四边形ACNH为拼接后的等腰梯形. 4分

23.解:(1)如答图6,当点A的横坐标为2时,点A、B、C、D的坐标分别为

A(2,4),B(2,1),C(

1,4),D(8,1). ·································· 1分 2221解法一:直线CD的解析式为y??x?? ······························· 2分

55

答图6

∵AB∥y轴,F为梯形ACBD的对角线的交点,

22117∴x=2时,y???2???

555∴点F的坐标为(2,

17).······················································ 3分 53解法二:AC?,BD?6,AB?3.

2∵梯形ACBD,AC∥BD,F为梯形ACBD的对角线的交点, ∴△ACF∽△BDF.

?AFAC1??? BFBD4

17AF13. ································ 2分 ?,AF?,点F的纵坐标为

AB55517∴点F的坐标为(2,). ······················································ 3分

5(2)如答图7,作BM⊥x轴于点M作CN⊥x轴于点N.当点A的横坐标为m时,点A、B、C、D的坐标分别为A(m,

?82m82),B(m,),C(,),D(4m,). mm4mm113m69S?ABC??AC?AB????? ··································· 4分

224m4S△OBC=S梯形CNMB+S△OCN-S△OBM

1823m15=S梯形CNMB=(?)?··········································· 5分 ?? ·

2mm44

答图7

∴S△OBC>S△ABC. ··································································· 6分 (3)点A的坐标为(2,4). ···························································· 7分

24.解:(1)点C的坐标为(3,0). ···························································· 1分

∵点A、B的坐标分别为A(8,0),B(0,6),

∴可设过A、B、C三点的抛物线的解析式为y=a(x-3)(x-8).

将x=0,y=6代入抛物线的解析式,得a?∴过A、B、C三点的抛物线的解析式为y?(2)可得抛物线的对称轴为x?1··························· 2分 ? ·41211············ 3分 x?x?6. ·

44112511,顶点D的坐标为(,?),设抛物线的对称轴与x轴的交点为G.

2162直线BC的解析式为y=-2x+6. ············································· 4分 设点P的坐标为(x,-2x+6).

解法一:如答图8,作OP∥AD交直线BC于点P,连结AP,作PM⊥x轴于点M.

答图8

∵OP∥AD,

∴∠POM=∠GAD,tan∠POM=tan∠GAD.

25?2x?6PMDG,即?16? ??11xOMGA8?2解得x?1616是原方程的解. ?经检验x?771610此时点P的坐标为(,). ······················································ 5分

77

但此时OM?165,GA?,OM?GA. 72OMGA,AD?,?POM?∠GAD,

cos?POMcos?GAD∴OP<AD,即四边形的对边OP与AD平行但不相等, ∴直线BC上不存在符合条件的点P. ········································ 6分

解法二:如答图9,取OA的中点E,作点D关于点E的对称点P,作PN⊥x轴于点N.则∠PEO=∠DEA,PE=D E.可得△PEN≌△DEG. ?OP?

答图9

由OE?OA?4,可得E点的坐标为(4,0). 23525NE?EG?,ON?OE?NE?,NP?DG??

2216525∴点P的坐标为(,). ·························································· 5分

216∵x=

5525时,-2x+6=-2×+6=1≠, 2216∴点P不在直线BC上.

∴直线BC上不存在符合条件的点P. ········································ 6分 (3)|QA-QO|的取值范围是0≤|QA-QO|≤4. ···································· 8分

说明:如答图10,由对称性可知QO=QH,|QA-QO|=|QA-QH|.当点Q与点B重合时,Q、H、A三点共线,|QA-QO|取得最大值4(即为AH的长);设线段OA的垂直平分线与直线BC的交点为K,当点Q与点K重合时,|QA-QO|取得最小值0.

答图10

25.解:(1)①如答图11,作AE⊥PB于点E. ············································ 1分

答图11

∵△APE中,∠APE=45°,PA?2,

?AE?PA?sin?APE?2?PE?PA?cos?APE?2?2?1, 22?1. 2∵PB=4,∴BE=PB-PE=3. ················································ 2分 在Rt△ABE中,∠AEB=90°,

?AB?·············································· 3分 AE2?BE2?10. ·

②解法一:如答图12,因为四边形ABCD为正方形,可将△PAD绕点A顺时针旋转90°得到△P′AB,可得△PAD

≌△P′AB,PD=P′B,PA=P′A.

答图12

∴∠PAP′=90°,∠APP′=45°,∠P′PB=90°.

∴PP′=2PA=2. ·························································· 4分 ····················· 5分 ?PD?P?B?PP?2?PB2?22?42?25. ·

解法二:如答图13,过点P作AB的平行线,与DA的延长线交于F,设DA的延长线交PB于G.

答图13

AE10AE?, ?3cos?EAGcos?ABE12EG?,PG?PB?BE?EG??

33在Rt△PFG中,可得PF=PG·cos∠FPG

在Rt△AEG中,可得AG??PG?cos?ABE?1010·························· 4分 ,FG?? ·

515在Rt△PDF中,可得PD?PF2?(AD?AG?FG)2 10210102)?(10??)?20?25. 5315 ········································································· 5分 ?((2)如答图14所示,将△PAD绕点A顺时针旋转90°得到△P′AB,PD的最大值即为P′B的最大值.

答图14

∵△P′PB中,P′B<PP′+PB,PP′=2PA=2,PB=4,

且P、D两点落在直线AB的两侧,

∴当P′、P、B三点共线时,P′B取得最大值(见答图15).

答图15

此时P′B=PP′+PB=6,即P′B的最大值为6. ············· 6分 此时∠APB=180°-∠APP′=135°. ····························· 7分

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库九年级数学综合练习一_3在线全文阅读。

九年级数学综合练习一_3.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/271856.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: