77范文网 - 专业文章范例文档资料分享平台

人工智能经典试题及答案

来源:网络收集 时间:2018-11-02 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

4. (10分)请把下述事实用一个语义网络表示出来: (1)李明是东方大学计算机系的一名学生。 (2)他住在计算机系的学生宿舍里。

(3)计算机系的每间学生宿舍都有一台联网的计算机。 (4)李明喜欢在宿舍的计算机上浏览。

5. (10分)已知下述事实: (1)小李只喜欢较容易的课程。 (2)工程类课程是较难的。

(3)PR系的所有课程都是较容易的。 (4)PR150是PR系的一门课程。

应用归结演绎推理回答问题:小李喜欢什么课程?

6. (10分)已知:

规则1:任何人的兄弟不是女性 规则2:任何人的姐妹必是女性 事实:Mary是Bill的姐妹

用归结推理方法证明Mary不是Tom的兄弟。

7. (15分)考虑下面的句子: ? ? ?

每个程序都存在Bug 含有Bug的程序无法工作 P是一个程序

(1)一阶谓词逻辑表示上述句子。 (2)使用归结原理证明P不能工作。

8. (10分)任何通过了历史考试并中了彩票的人都是快乐的。任何肯学习或幸运的人可以通过所有考试,小张不学习,但很幸运,任何人只要是幸运的就能中彩票。 求证:小张是快乐的。

9. (10分)已知:海关职员检查每一个入境的不重要人物,某些贩毒者入境,并且仅受到贩毒者的检查,没有一个贩毒者是重要人物。 证明:海关职员中有贩毒者。

10. (15分)有一堆硬币,开始时有9枚。A、B两人轮流从中取硬币,每次取时,可以取1枚或者2枚或者3枚,拣起最后一枚硬币者为输方。试用博弈树证明:后开始取硬币者总能获胜,或者先开始取硬币者总是会输。

46

47

第2章

2.8 设有如下语句,请用相应的谓词公式分别把他们表示出来:s (1) 有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花 。 解:定义谓词d P(x):x是人 L(x,y):x喜欢y

其中,y的个体域是{梅花,菊花}。

将知识用谓词表示为:

(?x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花)) (2) 有人每天下午都去打篮球。 解:定义谓词 P(x):x是人 B(x):x打篮球 A(y):y是下午 将知识用谓词表示为:a

(?x )(?y) (A(y)→B(x)∧P(x)) (3) 新型计算机速度又快,存储容量又大。 解:定义谓词

NC(x):x是新型计算机 F(x):x速度快 B(x):x容量大 将知识用谓词表示为: (?x) (NC(x)→F(x)∧B(x))

(4) 不是每个计算机系的学生都喜欢在计算机上编程序。 解:定义谓词

S(x):x是计算机系学生

L(x, pragramming):x喜欢编程序 U(x,computer):x使用计算机 将知识用谓词表示为:

? (?x) (S(x)→L(x, pragramming)∧U(x,computer)) (5) 凡是喜欢编程序的人都喜欢计算机。 解:定义谓词 P(x):x是人 L(x, y):x喜欢y 将知识用谓词表示为:

(?x) (P(x)∧L(x,pragramming)→L(x, computer))

1

知识表示方法部分参考答案

2.9 用谓词表示法求解机器人摞积木问题。设机器人有一只机械手,要处理的世界有一张桌子,桌上可堆放若干相同的方积木块。机械手有4个操作积木的典型动作:从桌上拣起一块积木;将手中的积木放到桌之上;在积木上再摞上一块积木;从积木上面拣起一块积木。积木世界的布局如下图所示。

解:(1) 先定义描述状态的谓词 CLEAR(x):积木x上面是空的。 ON(x, y):积木x在积木y的上面。 ONTABLE(x):积木x在桌子上。 HOLDING(x):机械手抓住x。

HANDEMPTY:机械手是空的。

其中,x和y的个体域都是{A, B, C}。

问题的初始状态是:

ONTABLE(A) ONTABLE(B) ON(C, A) CLEAR(B) CLEAR(C) HANDEMPTY

问题的目标状态是: ONTABLE(C) ON(B, C) ON(A, B)

CLEAR(A) HANDEMPTY

(2) 再定义描述操作的谓词

在本问题中,机械手的操作需要定义以下4个谓词: Pickup(x):从桌面上拣起一块积木x。 Putdown(x):将手中的积木放到桌面上。 Stack(x, y):在积木x上面再摞上一块积木y。 Upstack(x, y):从积木x上面拣起一块积木y。

其中,每一个操作都可分为条件和动作两部分,具体描述如下:

Pickup(x)

条件:ONTABLE(x),HANDEMPTY,CLEAR(x)

2

图 机器人摞积木问题

CA B A B C 动作:删除表:ONTABLE(x),HANDEMPTY 添加表:HANDEMPTY(x) Putdown(x)

条件:HANDEMPTY(x) 动作:删除表:HANDEMPTY(x)

添加表:ONTABLE(x),CLEAR(x) ,HANDEMPTY Stack(x, y)

条件:HANDEMPTY(x),CLEAR(y) 动作:删除表:HANDEMPTY(x),CLEAR(y) 添加表:HANDEMPTY,ON(x, y) ,CLEAR(x) Upstack(x, y)

条件:HANDEMPTY,CLEAR(y) ,ON(y,x) 动作:删除表:HANDEMPTY,ON(y, x) 添加表:HOLDING(y),CLEAR(x) (3) 问题求解过程

利用上述谓词和操作,其求解过程为: ONTABLE(A) ONTABLE(B) Upstack(A,C) ON(C, A) CLEAR(B) CLEAR(C) HANDEMPTY ONTABLE(A) ONTABLE(B) Putdown(C) HOLDING(C) CLEAR(A) CLEAR(B) CLEAR(C) ONTABLE(A) ONTABLE(B) ONTABLE(C) Pickup(B) CLEAR(A) CLEAR(B) CLEAR(C) HANDEMPTY ONTABLE(C) ON(B,C) ON(A,B) CLEAR(A) HANDEMPT ONTABLE(A) ONTABLE(A) ONTABLE(C) ONTABLE(C) Stack(C,B) Pickup(A) ON(B,C) HOLDING(B) CLEAR(A) CLEAR(A) CLEAR(B) CLEAR(B) CLEAR(C) HANDEMPTY

ONTABLE(C) ON(B,C) Stack(B,A) CLEAR(A) CLEAR(B) HOLDING(A) 2.10 用谓词表示法求解农夫、狼、山羊、白菜问题。农夫、狼、山羊、白菜全部放在一条河的左岸,现在要把他们全部送到河的右岸去,农夫有一条船,过河时,除农夫外船上至多能载狼、山羊、白菜中的一种。狼要吃山羊,山羊要吃白菜,除非农夫在那里。似规划出一个确保全部安全过河的计划。请写出所用谓词的定义,并给出每个谓词的功能及变量的个体域。

解:(1) 先定义描述状态的谓词

要描述这个问题,需要能够说明农夫、狼、羊、白菜和船在什么位置,为简化问题表示,取消船在河中行驶的状态,只描述左岸和右岸的状态。并且,由于左岸和右岸的状态互补,因此可仅对左岸或右岸的状态做直接描述。本题选择对左岸进行直接描述的方法,即定义谓词如下:

3

AL(x):x在左岸

其中,x的个体域是{农夫,船,狼,羊,白菜}。对应地,?AL(x)表示x在右岸。 问题的初始状态:

AL(农夫) AL(船) AL(狼) AL(羊) AL(白菜) 问题的目标状态:

?AL(农夫) ?AL(船) ?AL(狼) ?AL(羊) ?AL(白菜)

(2) 再定义描述操作的谓词 本题需要以下4个描述操作的谓词: L-R:农夫自己划船从左岸到右岸 L-R(x):农夫带着x划船从左岸到右岸 R-L:农夫自己划船从右岸到左岸 R-L(x) :农夫带着x划船从右岸到左岸 其中,x的个体域是{狼,羊,白菜}。

对上述每个操作,都包括条件和动作两部分。它们对应的条件和动作如下: L-R:农夫划船从左岸到右岸

条件:AL(船),AL(农夫),?AL(狼)∨?AL(羊),?AL(羊)∨?AL(白菜) 动作:删除表:AL(船),AL(农夫) 添加表:?AL(船),?AL(农夫) L-R(狼):农夫带着狼划船从左岸到右岸 条件:AL(船),AL(农夫),AL(狼),?AL(羊) 动作:删除表:AL(船),AL(农夫),AL(狼) 添加表:?AL(船),?AL(农夫),?AL(狼) L-R(羊):农夫带着羊划船从左岸到右岸

条件:AL(船),AL(农夫),AL(羊), AL(狼),AL(白菜) 或:AL(船),AL(农夫),AL(羊),?AL(狼),?AL(白菜) 动作:删除表:AL(船),AL(农夫),AL(羊) 添加表:?AL(船),?AL(农夫),?AL(羊) L-R(白菜):农夫带着白菜划船从左岸到右岸

条件:AL(船),AL(农夫),AL(白菜),?AL(狼) 动作:删除表:AL(船),AL(农夫),AL(白菜) 添加表:?AL(船),?AL(农夫),?AL(白菜) R-L:农夫划船从右岸到左岸

4

条件:?AL(船),?AL(农夫),AL(狼)∨AL(羊),AL(羊)∨AL(白菜) 或:?AL(船),?AL(农夫) ,?AL(狼),?AL(白菜),AL(羊) 动作:删除表:?AL(船),?AL(农夫) 添加表:AL(船),AL(农夫) R-L(羊) :农夫带着羊划船从右岸到左岸

条件:?AL(船),?AL(农夫),?AL(羊) ,?AL(狼),?AL(羊),AL(白菜) 动作:删除表:?AL(船),?AL(农夫),?AL(羊) 添加表:AL(船),AL(农夫),AL(羊) (3) 问题求解过程 AL(农夫) AL(船) AL(狼) AL(羊) AL(白菜) L-R(羊) AL(狼) AL(白菜) ?AL(农夫) ?AL(船) ?AL(羊) AL(羊) ?AL(农夫) ?AL(船) ?AL(白菜) ?AL(狼) R-L AL(农夫) AL(船) L-R(狼) AL(狼) AL(白菜) ?AL(羊) AL(农夫) L-R(羊) AL(船) AL(羊) ?AL(白菜) ?AL(狼) AL(白菜) ?AL(农夫) R-L(羊) ?AL(船) ?AL(狼) ?AL(羊) ?AL(农夫) ?AL(船) ?AL(羊) ?AL(白菜) ?AL(狼) AL( 农夫) AL( 船) L-R(白菜) AL( 羊) AL( 白菜) ? AL(狼) R-L 2.11 用谓词表示法求解修道士和野人问题。在河的北岸有三个修道士、三个野人和一条船,修道士们想用这条船将所有的人都运过河去,但要受到以下条件限制:

(1) 修道士和野人都会划船,但船一次只能装运两个人。

(2) 在任何岸边,野人数不能超过修道士,否则修道士会被野人吃掉。

假定野人愿意服从任何一种过河安排,请规划出一种确保修道士安全的过河方案。要求写出所用谓词的定义、功能及变量的个体域。

解:(1)定义谓词

先定义修道士和野人人数关系的谓词: G(x,y,S): 在状态S下x大于y GE(x,y,S):在状态S下x大于或等于y

其中,x,y分别代表修道士人数和野人数,他们的个体域均为{0,1,2,3}。

再定义船所在岸的谓词和修道士不在该岸上的谓词: Boat(z,S):状态S下船在z岸

EZ(x,S): 状态S下x等于0,即修道士不在该岸上 其中,z的个体域是{L,R},L表示左岸,R表示右岸。 再定义安全性谓词:

Safety(z,x,y,S)≡(G(x,0,S)∧GE(x,y,S))∨(EZ(x,S))

其中,z,x,y的含义同上。该谓词的含义是:状态S下,在z岸,保证修道士安全,当且仅当修道士不在该岸上,或者修道士在该岸上,但人数超过野人数。该谓词同时也描述了相应的状态。

5

初始状态:,目标状态:

11. 张某被盗,公安局派了五个侦察员去调查。研究案情时,侦察员A说:“赵与钱中至少有一人作案”;侦察员D说:“钱与孙至少有一人作案”;侦察员C说:“孙与李中至少有一个作案”;侦察员D说“赵与孙至少一个与案无关”;侦察员E说“钱与李中至少有一人与此案无关”。如果这五个侦察员的话都是可信的,试用消解原理推理求出谁是盗窃犯。

12. 某企业欲招聘一个JAVA程序员,定义如下产生式规则(要求):

r1: IF有工作经验 or (本科以上学历 and 有相关知识背景 then 录用(0.9) r2:IF 工作两年以上 and 作过相关工作 then 有工作经验 (0.8)

r3:IF 学过数据结构 and 学过JAVA and 学过数据库 and 学过软件工程 then 有相关知识背景(0.9) r4:学过数据结构(相关课程的成绩/100 ) r5:学过JAVA(相关课程的成绩/100 ) r6:学过数据库(相关课程的成绩/100 ) r7:学过软件工程(相关课程的成绩/100 ) r8:做过相关工作:

JAVA程序员:1,项目经理:1,数据库开发工程师:0.9,数据库管理员:0.7,网络管理员:0.6,客服人员:0.4

设有一本科毕业生甲,其相关课程的成绩为数据结构=85,JAVA=80,数据库=40,软件工程=90 另有一社会招聘人员乙,参加工作三年,曾做过数据库管理员和数据库开发人员

根据确定性理论,问该公司应该招聘谁?如果你是该本科生,为了能在招聘中胜出,你应该加强哪门课程,并使该门课程的成绩至少达到多少? 13. 某问题由下列公式描述:

试用归结法证明(x)R(x);

14. 下图所示博弈树,按从左到右的顺序进行α-β剪枝搜索,试标明各生成节点的到推值,何处发生剪枝,及

应选择的走步。10分

41

15.剪枝方法只是极小极大方法的一种近似,剪枝可能会遗漏掉最佳走步。这种说法是否正确? 1.

什么是人工智能?人工智能与计算机程序的区别?

答:AI是研究如何制造人造的智能机器或智能系统来模拟人类智能活动的能力以延伸人类智能的科学,它与计算机程序的区别是: ? ? ? ? 2.

AI研究的是符号表示的知识而不是数值数据为研究对象 AI采用启发式搜索方法而不是普通的算法 控制结构与知识是分离的 允许出现不正确的答案

化下列逻辑表达式为不含存在量词的前束范式

??X???Y????Z?P?X,Z??R?X,Y,f?a???

答:

??X???Y???Z(P?X,Z??R?X,Y,f?a??)? ??X???Y???Z(~P?X,Z??R?X,Y,f?a??)?

?X?Y?Z?~P?X,Z??R?X,Y,f?a???

?Y?Z?~P?b,Z??R?b,Y,f?a??? ?Y?~P?b,f(Y)??R?b,Y,f?a???

3.

求下列谓词公式的子句集

?x?y((P(x,y)?(Q(x,y)?R(x,y)))

42

答:

?x?y(~(P(x,y)?(Q(x,y)?R(x,y))) ?x?y((~P(x,y)?~(Q(x,y))?R(x,y)))

?x?y((~P(x,y)?R(x,y))?(~Q(x,y)?R(x,y)))

所以子句集为: {4.

~P(x,y)?R(x,y),~Q(x,y)?R(x,y)}

若有梯形ABCD,将其中的若干定理形式化即定义一些谓词公式,然后利用归结原理证明内错角

?ABD??CDB

A D B C

证明:设梯形顶点依次为a,b,c,d,定义谓词: T(x,y,u,v):表示xy为上底,uv为下底的梯形. P(x,y,u,v):表示xy||uv

E(x,y,z,u,v,w)表示∠xyz=∠uvw,问题的描述和相应的子句集为 xyuv[T(x,y,u,v)→P(x,y,u,v)]...梯形上下底平行

子句:~T(x,y,u,v)∨P(x,y,u,v)

xyuv[P(x,y,u,v)→E(x,y,v,u,v,y)]...平行则内错交相等 子句:

T(a,b,c,d)...已知 子句:T(a,b,c,d)

E(a,b,d,c,d,b)...要证明的结论 子句:~E(a,b,d,c,d,b) 子句集S为

~T(x,y,u,v)∨P(x,y,u,v) ~P(x,y,u,v)∨E(x,y,v,u,v,y) T(a,b,c,d) ~E(a,b,d,c,d,b) 下面利用归结原理证明 P(a,b,c,d) NIL

(1)和(3)归结,置换{a/x,b/y,c/u,d/v}

E(a,b,d,c,d,b) 根据归结原理得证。 5.

求子句集S?(2)和(5)归结,置换{a/x,b/y,c/u,d/v} (4)和(6)归结

?P(x,a,f(g(y)),P(z,h(z,u),f(u))?的MGU

43

解:k=0;S0=S;δ0=ε;S0不是单元素集,求得差异集D0={a/z},其中z是变元,a是项,且z不在a中出现。k=k+1=1

有δ1=δ0·{a/z}=ε·{a/z}={a/z},

S1=S0·{a/z}={P(a,x,f(g(y)),P(a,h(a,u),f(u))),S1不是单元素集, 求得差异集D1={x,h(a,u)},k=k+1=2;δ2=δ1·{h(a,u)/x}={a/z,h(a,u)/x}, S2=S1·{h(a,u)/x}={P(a,h(a,u),f(g(y)),P(a,h(a,u),f(u))), S2不是单元素集,求得差异集D2={g(y),u},k=k+1=3

δ3=δ2·{g(y)/u}={a/z,h(a,u)/x}·{g(y)/u}={a/z,h(a,g(y))/x,g(y)/u} S3=S2·{g(y)/u}={P(a,h(a,g(y)),f(g(y)))}是单元素集。 根据求MGU算法,MGU=δ3={a/z,h(a,g(y))/x,g(y)/u} 6.

用代价优先算法求解下图的旅行推销员问题,请找一条从北京出发能遍历各城市的最佳路径(旅行费最少),每条弧上的数字表示城市间的旅行费用。并用CLOSED表记录遍历过的结点,OPEN表记录待遍历的结点。画出closed和open表的变化过程,然后根据closed表找出最佳路径。

解: OPEN表

扩展节点 A(0) B(31) C(28) D(43) C(54) E(38) C(59) C(27) A(51) CLOSE表

扩展节点 A(0) C(28) E(29)

父节点 NULL A C 44 父节点 NULL A A B B D D E E D(38) B(43) A(31) 7.

用框架表示下述报导的沙尘暴灾害事件

E D B [虚拟新华社3月16日电]昨日,沙尘暴袭击韩国汉城,机场与高速公路被迫关闭,造成的损失不详。韩国官方示,如果需要直接损失情况,可待一周后的官方公布的字。此次沙尘暴起因中日韩专家认为是由于中国内蒙古区过分垦牧破坏植被所致。 提示:分析概括用下划线标出的要点,经过概念化形成槽(Slot)并拟出槽的名称,选填侧面(face)值。侧面包含“值(value)”,“默认值(default)”,“如果需要值(if-needed)”,“如果附加值(if-added)”几个方面,用不到的侧面值可删除。 FRAME: Slot1: Value: Default: If-needed: If-added: 解:

FRAME:沙尘暴 Slot1:时间 Default: If-needed: If-added: Slot2:地点 Default: If-needed: If-added: Slot3:损失 Value:不详 Default: If-needed:一周后官方公布数字 If-added:

1. (5分)什么是“知识工程”?它对人工智能的发展有何重要作用?

2. (10分)请用相应的谓词公式表示下述语句:

(1)有的人喜欢足球,有的人喜欢排球,有的人既喜欢足球又喜欢排球。 (2)不是每一个人都喜欢游泳。

(3)如果没有利息,那么就没有人愿意去存钱。

(4)对于所有的x和y,如果x是y的父亲,y是z的父亲,那么x是z的祖父。 (5)对于所有的x和y,如果x是y的孩子,那么y是x的父母。 (6)登高望远。 (7)响鼓不用重锤。

(8)如果b>a>0和c>d>0,则有(b*(a+c)/d)>b。

3. (5分)试建立一个“学生”框架网络,其中至少有“学生基本情况”、“学生课程学习情况”和“学生奖惩情况”三个框架描述。

45

Slot4:起因 Default:中国内蒙古区 Value:3 月15 日 Value:韩国汉城 Slot2: Value: Default: If-needed: If-added: Slot3: Value: Default: If-needed: If-added: ??

=0.002

P(H2 | ?E2) = (LN2 × P(H2)) / ((LN2-1) × P(H2)+1)

= (0.5 × 0.2) / ((0.5 -1) × 0.2 +1) =0.111

P(H3 | ?E3) = (LN3 × P(H3)) / ((LN3-1) × P(H3)+1)

= (0.05 × 0.4) / ((0.05 -1) × 0.4 +1) =0.032

6.13 设有如下一组推理规则:

r1: IF E1 AND E2 THEN A={a} (CF={0.9})

r2: IF E2 AND (E3 OR E4) THEN B={b1, b2} (CF={0.8, 0.7}) r3: IF A THEN H={h1, h2, h3} (CF={0.6, 0.5, 0.4}) r4: IF B THEN H={h1, h2, h3} (CF={0.3, 0.2, 0.1}) 且已知初始证据的确定性分别为:

CER(E1)=0.6, CER(E2)=0.7, CER(E3)=0.8, CER(E4)=0.9。

假设|Ω|=10,求CER(H)。 解:其推理过程参考例6.9 具体过程略

6.15 设

U=V={1,2,3,4}

且有如下推理规则:

IF x is 少 THEN y is 多 其中,“少”与“多”分别是U与V上的模糊集,设 少=0.9/1+0.7/2+0.4/3 多=0.3/2+0.7/3+0.9/4 已知事实为

x is 较少 “较少”的模糊集为

较少=0.8/1+0.5/2+0.2/3 请用模糊关系Rm求出模糊结论。 解:先用模糊关系Rm求出规则 IF x is 少 THEN y is 多 所包含的模糊关系Rm

Rm (1,1)=(0.9∧0)∨(1-0.9)=0.1 Rm (1,2)=(0.9∧0.3)∨(1-0.9)=0.3 Rm (1,3)=(0.9∧0.7)∨(1-0.9)=0.7 Rm (1,4)=(0.9∧0.9)∨(1-0.9)=0.7 Rm (2,1)=(0.7∧0)∨(1-0.7)=0.3 Rm (2,2)=(0.7∧0.3)∨(1-0.7)=0.3

31

Rm (2,3)=(0.7∧0.7)∨(1-0.7)=0.7 Rm (2,4)=(0.7∧0.9)∨(1-0.7)=0.7 Rm (3,1)=(0.4∧0)∨(1-0.4)=0.6 Rm (3,2)=(0.4∧0.3)∨(1-0.4)=0.6 Rm (3,3)=(0.4∧0.7)∨(1-0.4)=0.6 Rm (3,4)=(0.4∧0.9)∨(1-0.4)=0.6 Rm (4,1)=(0∧0)∨(1-0)=1 Rm (4,2)=(0∧0.3)∨(1-0)=1 Rm (4,3)=(0∧0.7)∨(1-0)=1 Rm (3,4)=(0∧0.9)∨(1-0)=1 即:

?0.10.30.70.9??0.30.30.70.7?? Rm???0.60.60.60.6???1111??因此有

Y'??0.8,0.5,0.2,0??0.10.30.70.9??0.30.30.70.7????0.60.60.60.6? ??111??1??0.3,0.3.0.7,0.8?即,模糊结论为

Y’={0.3, 0.3, 0.7, 0.8}

6.16 设

U=V=W={1,2,3,4} 且设有如下规则:

r1:IF x is F THEN y is G r2:IF y is G THEN z is H r3:IF x is F THEN z is H 其中,F、G、H的模糊集分别为: F=1/1+0.8/2+0.5/3+0.4/4 G=0.1/2+0.2/3+0.4/4 H=0.2/2+0.5/3+0.8/4

请分别对各种模糊关系验证满足模糊三段论的情况。

解:本题的解题思路是:

由模糊集F和G求出r1所表示的模糊关系R1m, R1c, R1g

32

再由模糊集G和H求出r2所表示的模糊关系R2m, R2c, R2g 再由模糊集F和H求出r3所表示的模糊关系R3m, R3c, R3g 然后再将R1m, R1c, R1g分别与R2m, R2c, R2g合成得R12 m, R12c, R12g 最后将R12 m, R12c, R12g分别与R3m, R3c, R3g比较

第7章

7-6 设训练例子集如下表所示:

序号 1 2 3 4 5 6 属性 x1 T T T F F F x2 T T F F T T 分类 + + - + _ _ 机器学习参考答案

请用ID3算法完成其学习过程。

解:设根节点为S,尽管它包含了所有的训练例子,但却没有包含任何分类信息,因此具有最大的信息熵。即:

H(S)= - (P(+)log2 P(+) + P(-)log2 P(-))

式中

P(+)=3/6,P(-)=3/6

分别是决策方案为“+”或“-”时的概率。因此有

H(S)= - ((3/6)log2(3/6) + (3/6)log2(3/6)) =1

按照ID3算法,需要选择一个能使S的期望熵为最小的一个属性对根节点进行扩展,因此我们需要先计算S关于每个属性的条件熵:

H(S|xi)= ( |ST| / |S|)* H(ST) + ( |SF| / |S|)* H(SF)

其中,T和F为属性xi的属性值,ST和SF分别为xi=T或xi=F时的例子集,|S|、| ST|和|SF|分别为例子集S、ST和SF 的大小。

下面先计算S关于属性x1的条件熵: 在本题中,当x1=T时,有: ST={1,2,3} 当x1=F时,有:

SF={4,5,6}

其中,ST 和SF中的数字均为例子集S中的各个例子的序号,且有|S|=6,| ST |=| SF |=3。

33

由ST可知,其决策方案为“+”或“-”的概率分别是: PST(+)=2/3

PST (-)=1/3

因此有:

H(ST)= - (PST (+)log2 PST (+) + PST (-)log2 PST (- ))

= - ((2/3)log2(2/3) + (1/3)log2(1/3)) =0.9183

再由SF可知,其决策方案为“+”或“-”的概率分别是: PSF (+)=1/3

PSF (-)=2/3

则有:

H (SF)= - (PSF (+)log2 PSF (+) + PSF (-)log2 PSF (- ))

= - ((1/3)log2(1/3)+ (2/3)log2(2/3)) =0.9183

将H(ST)和H (SF)代入条件熵公式,有:

H(S|x1)=(|ST|/|S|)H(ST)+ (|SF|/|S|)H(SF) =(3/6)﹡0.9183 + (3/6)﹡0.9183

=0.9183

下面再计算S关于属性x2的条件熵: 在本题中,当x2=T时,有: ST={1,2,5,6} 当x2=F时,有:

SF={3,4}

其中,ST 和SF中的数字均为例子集S中的各个例子的序号,且有|S|=6,| ST |=4,| SF |=2。

由ST可知: PST (+) = 2/4

P ST (-) = 2/4

则有:

H(ST)= - (P ST (+)log2 P ST (+) + P ST (-)log2 P ST (- ))

= - ((2/4)log2(2/4) + (2/4)log2(2/4)) =1

再由SF可知: P SF (+)=1/2

P SF (-)=1/2

则有:

H(SF)= - (P(+)log2 P(+) + P(-)log2 P(- ))

= - ((1/2)log2(1/2)+ (1/2)log2(1/2)) =1

将H(ST)和H (SF)代入条件熵公式,有:

H(S|x2)=(|ST|/|S|)H(ST)+ (|SF|/|S|)H(SF)

34

=(4/6)﹡1 + (2/6)﹡1

=1

可见,应该选择属性x1对根节点进行扩展。用x1对S扩展后所得到的部分决策树如下图所示。

x1=T (+,+,-) S x1=F (+,-,-) 扩展x1后的部分决策树

在该决策树中,其2个叶节点均不是最终决策方案,因此还需要继续扩展。而要继续扩展,只有属性x2可选择,因此不需要再进行条件熵的计算,可直接对属性x2进行扩展。

对x2扩展后所得到的决策树如下图所示:

x1=T (+,+,-) x2=T (+,+) S x2=F (+,-,-) x2=F x2=T (-) (-,-) x2=F (+)

7-9假设w1(0)=0.2, w2(0)=0.4, θ(0)=0.3, η=0.4,请用单层感知器完成逻辑或运算的学习过程。 解:根据“或”运算的逻辑关系,可将问题转换为: 输入向量:X1=[0, 0, 1, 1] X2=[0, 1, 0, 1] 输出向量:Y=[0, 1, 1, 1]

由题意可知,初始连接权值、阈值,以及增益因子的取值分别为: w1(0)=0.2, w2(0)=0.4, θ(0)=0.3,η=0.4

即其输入向量X(0)和连接权值向量W(0)可分别表示为: X(0)=(-1, x1 (0), x2 (0))

W(0)=(θ(0), w1(0), w2 (0))

根据单层感知起学习算法,其学习过程如下:

设感知器的两个输入为x1(0)=0和x2(0)=0,其期望输出为d(0)=0,实际输出为:

y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*0+0.4*0-0.3)=f(-0.3)=0 实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(0)=0和x2(0)=1,其期望输出为d(0)=1,实际输出为:

y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*0+0.4*1-0.3)=f(0.1)=1

35

扩展x2后得到的完整决策树

实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(0)=1和x2(0)=0,其期望输出为d(0)=1,实际输出为:

y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*1+0.4*0-0.3)

=f(-0.1)=0

实际输出与期望输出不同,需要调节权值,其调整如下:

θ(1)=θ(0)+η(d(0)- y(0))*(-1)=0.3+0.4*(1-0)*(-1)= -0.1 w1(1)=w1(0)+η(d(0)- y(0))x1(0)=0.2+0.4*(1-0)*1=0.6 w2(1)=w2(0)+η(d(0)- y(0))x2(0)=0.4+0.4*(1-0)*0=0.4

再取下一组输入:x1(1)=1和x2(1)=1,其期望输出为d(1)=1,实际输出为:

y(1)=f(w1(1) x1(1)+ w2(1) x2(1)-θ(1)) =f(0.6*1+0.4*1+0.1)

=f(1.1)=1

实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(1)=0和x2(1)=0,其期望输出为d(0)=0,实际输出为:

y(1)=f(w1(1) x1(1)+ w2(1) x2(1)-θ(1)) =f(0.6*0+0.4*0 + 0.1)=f(0.1)=1 实际输出与期望输出不同,需要调节权值,其调整如下:

θ(2)=θ(1)+η(d(1)- y(1))*(-1)= -0.1+0.4*(0-1)*(-1)= 0.3 w1(2)=w1(1)+η(d(1)- y(1))x1(1)=0.6+0.4*(0-1)*0=0.6 w2(2)=w2(1)+η(d(1)- y(1))x2(1)=0.4+0.4*(0-1)*0=0.4

再取下一组输入:x1(2)=0和x2(2)=1,其期望输出为d(2)=1,实际输出为:

y(2)=f(w1(2) x1(2)+ w2(2) x2(2)-θ(2)) =f(0.6*0+0.4*1 - 0.3)=f(0.1)=1 实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(2)=1和x2(2)=0,其期望输出为d(2)=1,实际输出为:

y(2)=f(w1(2) x1(2)+ w2(2) x2(2)-θ(2)) =f(0.6*1+0.4*0 - 0.3)=f(0.3)=1 实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(2)=1和x2(2)=1,其期望输出为d(2)=1,实际输出为:

y(2)=f(w1(2) x1(2)+ w2(2) x2(2)-θ(2)) =f(0.6*1+0.4*1 - 0.3)=f(0.7)=1 实际输出与期望输出相同,不需要调节权值。

至此,学习过程结束。最后的得到的阈值和连接权值分别为:

θ(2)= 0.3 w1(2)=0.6 w2(2)= 0.4 不仿验证如下:

对输入:“0 0”有y=f(0.6*0+0.4*0-0.3)=f(-0.3)=0 对输入:“0 1”有y=f(0.6*0+0.4*1-0.3)=f(0.1)=1

36

对输入:“1 0”有y=f(0.6*1+0.4*0-0.3)=f(0.3)=1 对输入:“1 1”有y=f(0.6*1+0.4*1-0.3)=f(0.7)=1

完1.将下列自然语言转化为谓词表示形式: (1) 所有的人都是要呼吸的。 (2) 每个学生都要参加考试。 (3) 任何整数或是正的或是负的。 2.何谓“图灵实验”?简单描述之

3.写出图中树的结点两个访问序列,要求分别满足以下两个搜索策略:

(1) 深度优先搜索 (2) 广度优先搜索

4.试实现一个“大学教师”的框架,大学教师类属于教师,包括以下属性:学历(学士、硕士、博士)、专业(计算机、电子、自动化、??)、职称(助教、讲师、副教授、教授) 5.用谓词逻辑形式化下列描述

“不存在最大的整数” 6.用语义网络表示“苹果”知识。

7. 什么是产生式?产生式规则的语义是什么?

8. 谓词公式G通过8个步骤所得的子句集合S,称为G的子句集。请写出这些步骤。9.(1)已知S={P(f(x),y,g(y)),P(f(x),z,g(x))},求MGU

(2)已知W={P(f(x,g(A,y)),z),P(f(x,z),z)},求MGU 10.(1) 证明G是否是F的逻辑结论;

5 2 6 3 4 1 7 8 13 9 10 11 12 F:?x(P(x)?Q(a)?Q(x))

G:?x(P(x)?Q(x))(2)证明G是否是F1、F2的逻辑结论;

F1:?x(P(x)?(Q(x)?R(x)) F2:?x(P(x)?S(x))G:?x(S(x)?R(x))11. 1、用语义网络表示下列信息:

(1)胡途是思源公司的经理,他35岁,住在飞天胡同68号

(2)清华大学与北京大学进行蓝球比赛,最后以89:102的比分结束。 (3)将命题:“某个学生读过三国演义”分别用谓词公式和语义网络表示 (4)把语句“每个学生都喜欢老师上的一门课。”表示为语义网络。

37

(5)请把下列命题表示的事实用一个语义网络表示出来。 1)树和草都是植物; 2)树和草都是有根有叶的; 3)水草是草,且长在水中; 4)果树是树,且会结果; 5)樱桃树是一种果树,它结樱桃。 (6)用语义网络表示下列事实

姚明是一位年近半百的男教师,中等身材,他在本学年第二学期给计算机专业学生讲授“人工智能”课程。该课程是一门选修课,比较难。

13. 图示博弈树,其中末一行的数字为假设的估值,请利用α-β剪枝技术剪去不必要的分枝。(在节点及边上直接加注释)

14. 设有如下关系:(1)如果x是y的父亲,y又是z的父亲,则x是z的祖父; (2)老李是大李的父亲;(3)大李是小李的父亲;问上述人员中谁和谁是祖孙关系? 15解释下列模糊性知识: 1) 张三,体型,(胖,0.9))。

2) (患者,症状,(头疼,0.95) )∧ (患者,症状,(发烧,1.1) ) →(患者,疾病,(感冒,1.2) ) 16. 简单阐述产生式系统的组成。

17. 试用线性消解策略证明:子句集S={ P∨Q, ﹁P∨R, ﹁Q∨R, ﹁R }是可消解的。 18广度优先搜索与深度优先搜索各有什么特点? 19.语义网络可以表达事物之间的哪些关系?

20.假设已知下列事实:

(1)超市(Supermarket)卖(Sail)的商品(Goods)便宜(Cheap)。 (2)王(Wang)买(Buy)需要的(Want)便宜商品。 (3)自行车(Bicycle)是商品且超市卖自行车。 (4)王需要自行车。

(5)赵(Zhao)跟随王买同样的商品。

38

请应用归结反演证明方法回答以下问题: (1)王买自行车吗? (2)赵买什么商品?

21.已知一个使用可信度方法的推理网络如图所示,其证据的可信度均标示在图中。推理规则的可信度分别为:A∧B→H, 0.7

C∨D→H, 0.9

E→H, 0.3

试按照可信度方法的求解步骤计算每个证据节点对假设H推理的可信度,并据此推算全部证据(复合证据)对于H推理的可信度。

H E A 0.3

B 0.5 C D

0.4 0.2 ?0.8 22. 求子句R(x, y)∨﹁Q(B, y)∨W(x, f(y)) 和R(x, C)∨Q(y, C) 的归结式。 23. 何谓估价函数?启发式图搜索的A算法和A*算法最显著的区别是什么? 24. 什么是置换?置换是可交换的吗?

25. 给1~9九个数字排一个序列,使得该序列的前n(n=1,...,9) 个数字组成的整数能被n整除。 (1)、讨论哪些知识可以帮助该问题的求解。 (2)、用产生式系统描述该问题. 26. .α-β剪枝的条件是什么? 27将下列自然语言转化为谓词表示形式: (1)所有的人都是要呼吸的。 (2)每个学生都要参加考试。 (3) 任何整数或是正的或是负的。

28、人工智能主要有哪几种研究途径和技术方法,简单说明之。 一、 1、(1)将下列谓词公式化成子句集

?x?y??z?P?z??~Q?x,z???R?x,y,f?a???

(2)把下列谓词公式分别化成相应的子句集:

x(

yP(x,y)→~

y(Q(x,y)→R(x,y)))

2.若谓词公式E=P(x,f(y),z),置换s1={f(x,y)/z,z/w},s2={a/x,b/y,w/z},求E(s1·s2),E(s2·s1)。 3.用加权图的启发式搜索算法(不能用Dijkstra算法)求解下列问题:下图是一个交通图,设A是出发地,E是目的地,边上的数字表示两城市之间的交通费。求从A到E最小费用的旅行路线,画出搜索树,画出Closed表和Open表的变化过程。

B 4 5 E A 4.用标准逻辑(经典逻辑,谓词逻辑)的子句集表示下述刑侦知识,并用反演归解的线性策略证明结论

现定义如下谓词(其项变量X,Y,Z,皆为全称量词)。 3

C 4 39 3 2 D Thief(X)-----某人X是贼;

Likes(X,Y)------某人X喜欢某物Y;

May-steal(X,Y)------某人X可能会偷窃某物Y。 5.用子句集表达下述刑侦知识:

I. John是贼。

II. Paul喜欢酒(wine)

III. Paul( 也)喜欢奶酪(cheese)

IV. 如果Paul喜欢某物则John 也喜欢某物。

V. 如果某人是贼,而且他喜欢某物,则他就可能会偷窃该物。

6.求证结论:John可能会偷窃了什么?即求证目标:may-steal(John,Z), Z=?(要求将求证目标作为顶子句,按线性策略进行归结推理,注明每次求归结式所进行的置换及其父子句的编号) 7.(1)已知一组规则和证据(事实):

R1:A1→B1,CF(B1,A1)=0.8 R2:A2→B1,CF(B1,A2)=0.5

R3:B1∧A3->B2,CF(B2,B1∧A3)=0.8

初始证据A1,A2,A3,并且CF(A1)=CF(A2)=CF(A3)=1, 并且初始时对B1,B2一无所知。根据Shortliffe的确定性理论(可信度方法),求证据B1,B2的可信度在执行规则R1,R2,R3后的更新值CF(B1),CF(B2)。 (2)已知有如下不确定推理规则: r1:C11∨C12 T H1 0.7; r2:H1 T H 0.5; r3:C21∧C22 T H -0.6; r4:(C31∧C32)∨C33 T H 0.8;

CF(C11) = 0.8, CF(C12) = 0.9,CF(C21) = 0.3,CF(C22) = 0.6, CF(C31) = 0.9,CF(C32) = 0.5,CF(C33) =0.7;

请应用MYCIN的确定性方法求出CF(H)。

8.设有A,B,C三人中有人从不说真话,也有人从不说假话,某人向这三人分别提出同一个问题:谁是说谎者?A 答:“B和C都是说谎者”;B答:“A和C都是说谎者”;C答:“A和B中至少有一个是说谎者”。求谁是老实人,谁是说谎者?(15分) 9. 1)设已知:

(1)能阅读者是识字的; (2)海豚不识字; (3)有些海豚是聪明的; 求证:有些聪明者并不能阅读.

2)利用谓词逻辑表示下列知识(包括已知和结论),然后化成子句集: (1)凡是清洁的东西就有人喜欢; (2)人们都不喜欢苍蝇 求证:苍蝇是不清洁的。

10. 八数码游戏,初始棋局和目标棋局如图,定义启发函数h(x)表示某状态下与目标数码不同的位置个数,用全局择优法画出搜索的过程。

40

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库人工智能经典试题及答案在线全文阅读。

人工智能经典试题及答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/251347.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: