77范文网 - 专业文章范例文档资料分享平台

毕业论文(3)

来源:网络收集 时间:2020-06-05 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

燕山大学本科生毕业设计(论文)

5GHz波段)的物理层接入方案,目标是提供6Mbit/S~54Mbit/S的数据速率,这是OFDM第一次被用于分组业务通信当中。而此以后,ETSI、BRAN以及MMAC也纷纷采用OFDM作为其物理层的标准[4]。

此外,OFDM还易于结合空时编码、分集、干扰(包括151和ICI)以及智能天线等技术,最大程度地提高物理层信息传输的可靠性。如果再结合自适应调制、自适应编码以及动态子载波分配、动态比特分配算法等技术,可以使其性能进一步得到优化。

1.2.3 OFDM技术的应用

从技术层面来看,第四代移动通信系统将有望以OFDM(Orthogonal Frequency Division Multiplexing)为核心技术,主要理由是无线电频率使用效益高、抗噪声能力强、适合高速数据传输等。然而OFDM仍有许多问题待解决,不过部分标准的制订工作已经接近尾声且即将商用化(如数字音频广播),目前,OFDM技术已经广泛应用于无线局域网领域,但若要应用在移动通信领域仍需时日。

目前OFDM技术已经被广泛应用于广播式的音频、视频领域和民用通信系统中,主要的应用包括:非对称的数字用户环路(ADSL)、ETSI标准的数字音频广播(DAB)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线城域网、无线局域网(WLAN),甚至3G的CDMA也开始引入OFDM技术思想以提升其性能。

(1)高清晰度数字电视广播 OFDM在数字广播电视系统中取得了广泛的应用,其中数字音频广播(DAB)标准是第一个正式使用OFDM的标准。另外,当前国际上全数字高清晰度电视传输系统中采用的调制技术中就包括OFDM技术,欧洲HDTV传输系统已经采用COFDM(coded OFDM:编码OFDM)技术。它具有很高的频谱利用率,可以进一步提高抗干扰能力,满足电视系统的传输要求。选择OFDM作为数字音频广播和数字视频广播(DVB)的主要原因在于:OFDM技术可以有效地解决多径时延扩展问题[5]。

因此不难看出,OFDM技术良好的性能使得它在很多领域得到了广泛的应用。欧洲的DAB系统使用的OFDM调制技术其试验系统已在运行,很快吸引了大量听众。它明显地改善了移动中接收无线广播的效果,用于DAB的

3

燕山大学本科生毕业设计(论文)

成套芯片的开发工作正在一项欧洲发展项目中进行,它将使OFDM接收机的价格大大降低,其市场前景非常看好。

(2)无线局域网 大家知道,HiperLAN/2物理层应用了OFDM和链路自适应技术,媒体接入控制(MAC)层采用面向连接、集中资源控制的TDMA/TDD方式和无线ATM技术,最高速率达54Mbps,实际应用最低也能保持在20Mbps左右。另外,IEEE 802.11无线局域网工作于ISM免许可证频段,分别在5.8GHz和2.4GHz两个频段定义了采用OFDM技术的IEEE 802.11a和IEEE 802.11g标准,其最高数据传输速率提高到54Mbps[6] 。

技术的不断发展,引发了融合。一些4G及3.5G的关键技术,如OFDM技术、MIMO技术、智能天线和软件无线电等,开始应用到无线局域网中,以提升WLAN的性能。如802.11a和802.11g采用OFDM调制技术,提高了传输速率,增加了网络吞吐量。802.11n计划采用MIMO与OFDM相结合,使传输速率成倍提高。另外,天线技术及传输技术,使得无线局域网的传输距离大大增加,可以达到几公里(并且能够保障100Mbps的传输速率)。

而对于今后要开展的在无线局域网中的多媒体业务来说,最高为54Mbps的数据传输速率还远远不够。为了进一步提升无线局域网的数据传输速率,实现有线与无线局域网的无缝结合,IEEE成立了IEEE 802.11n工作小组,以制定一项新的高速无线局域网标准。IEEE 802.11n计划将WLAN的传输速率从802.11a和802.11g的54Mbps增加至108Mbps以上,最高速率可达到320Mbps,成为802.11b/a/g之后的另一场重头戏。和以往的802.11标准不同,802.11n协议为双频工作模式(包含2.4GHz和5.8GHz两个工作频段)。这样802.11n保证了与以往的802.11a/b/g标准兼容。

(3)OFDM技术在4G中的应用 空中接口物理层技术是无线通信系统的基础与标志,在系统演进中扮演着重要的角色。在2004年6法国的RANI Ad Hoc on LTE会议上RANI对各个公司提交的候选方案进行了概况和收敛。确定了六种备选的多址方式:

(1)FDD上行SC-FDMA,下行OFDMA; (2)FDD上行OFDMA,下行OFDM; (3)DDMC-WCDMA;

4

燕山大学本科生毕业设计(论文)

(4)TDDMC-TD-SCDMA;

(5)TDD上行OFDMA,下行OFDMA; (6)TDD上行SC-FDMA,下行OFDMA。

3GPP组织就LTE系统物理层下行传输方案很快达成一致,采用先进成熟的OFDM技术;经过协商讨论最后上行方案选择了单载波SC-FDMA,这样LTE系统传输方案最终确定为下行OFDMA和上行SC-FDMA的空中接口技术[7]。

一个近似测量内接收机质量的参数是额外的信噪比损失,该参数反映了为获得相同性能,实际系统相对于理想系统需要的额外SNR,即

SNRloss?nSNRreal??SNRidealreal?N??ideal??22

或者SNRloss?SNRreal?SNRideal。式中,SNRideal表示在理想的同步情况下接收机为了达到相同性能所需要的SNR。

OFDM系统内接收机所要完成的任务就是:将各种未知参数通过相应的算法求出精确解并进行补偿,将各种非理想因素进行处理变成近似理想状态。

相比较与WCDMA 5MHz的频谱带宽,该系统的最大带宽为20MKz,主要的技术参数如下:

一方面提高频谱效率,在20MKz带宽下,空中接口峰值速率达到:下行100Mbit/s;

另一放面严格的QOS要求,保证良好的用户体验以及分组交换对于VOIP等各种实时业务的支持。

(4)宽带无线接入中的OFDM在BWA领域,一些公司开发的技术虽然都基于OFDM,但有各自的特色,形成一些专利技术,如Cisco和Iospan公司的Vector OFDM。Wi-LAN公司的Wideband OFDM。Flarion公司的flash-OFDM。VOFDM由Cisco公司支持,WOFDM则由Wi-LAN公司提出,构成了的两大阵营宽带无线论坛和论坛,它们力图使自己OFDM的模式成为标准。由Wi-LAN公司倡导的论坛,有50多个成员,一些公司,如Breezccom,start-up BeamReach Networks和Nokia参加,OFDM论坛主要

5

燕山大学本科生毕业设计(论文)

是协调提交到IEEEE的OFDM提案。在Cisco倡导下,IEEE工业标准技术组织IEEE-ISTO成立了宽带Internet论坛,提供低成本宽带无线接入技术,号召采用基VOFDM于的标准作为解决方案。类似的还有C-OFDM、F-OFDM及OFDM等[8]。

1.2.4 OFDM技术的优势和不足

OFDM存在很多技术优点见如下,在3G、4G中被运用,作为通信方面其有很多优势:

(1)在窄带带宽下也能够发出大量的数据。OFDM技术能同时分开至少1000个数字信号,而且在干扰的信号周围可以安全运行的能力将直接威胁到目前市场上已经开始流行的CDMA技术的进一步发展壮大的态势,正是由于具有了这种特殊的信号“穿透能力”使得OFDM技术深受欧洲通信营运商以及手机生产商的喜爱和欢迎,例如加利福尼亚Cisco系统公司、纽约Flarion工学院以及朗讯工学院等开始使用,在加拿大Wi-LAN工学院也开始使用这项技术[9]。

(2)OFDM技术能够持续不断地监控传输介质上通信特性的突然变化,由于通信路径传送数据的能力会随时间发生变化,所以OFDM能动态地与之相适应,并且接通和切断相应的载波以保证持续地进行成功的通信。

(3)该技术可以自动地检测到传输介质下哪一个特定的载波存在高的信号衰减或干扰脉冲,然后采取合适的调制措施来使指定频率下的载波进行成功通信。

(4)OFDM技术特别适合使用在高层建筑物、居民密集和地理上突出的地方以及将信号散播的地区。高速的数据传播及数字语音广播都希望降低多径效应对信号的影响。

(5)OFDM技术的最大优点是对抗频率选择性衰落或窄带干扰。在单载波系统中,单个衰落或干扰能够导致整个通信链路失败,但是在多载波系统中,仅仅有很小一部分载波会受到干扰。对这些子信道还可以采用纠错码来进行纠错。

(6)可以有效地对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输。当信道中因为多径传输而出现频率选择性衰落时,只有落

6

燕山大学本科生毕业设计(论文)

在频带凹陷处的子载波以及其携带的信息受影响,其他的子载波未受损害,因此系统总的误码率性能要好得多。

(7)通过各个子载波的联合编码,具有很强的抗衰落能力。OFDM技术本身已经利用了信道的频率分集,如果衰落不是特别严重,就没有必要再加时域均衡器。通过将各个信道联合编码,则可以使系统性能得到提高。

(8)OFDM技术抗窄带干扰性很强,因为这些干扰仅仅影响到很小一部分的子信道。

(9)信道利用率很高,这一点在频谱资源有限的无线环境中尤为重要;当子载波个数很大时,系统的频谱利用率趋于2Baud/Hz。(baud即波特;1 Baud =log2M(bit/s),其中M是信号的编码级数

虽然OFDM有上述优点,但是同样其信号调制机制也使得OFDM信号在传输过程中存在着一些劣势:

(1)对相位噪声和载波频偏十分敏感 这是OFDM技术一个非常致命的缺点,整个OFDM系统对各个子载波之间的正交性要求格外严格,任何一点小的载波频偏都会破坏子载波之间的正交性,引起ICI,同样,相位噪声也会导致码元星座点的旋转、扩散,从而形成ICI。而单载波系统就没有这个问题,相位噪声和载波频偏仅仅是降低了接收到的信噪比SNR,而不会引起互相之间的干扰[9]。

(2)峰均比过大 OFDM信号由多个子载波信号组成,这些子载波信号由不同的调制符号独立调制。同传统的恒包络的调制方法相比,OFDM调制存在一个很高的峰值因子。因为OFDM信号是很多个小信号的总和,这些小信号的相位是由要传输的数据序列决定的。对某些数据,这些小信号可能同相,而在幅度上叠加在一起从而产生很大的瞬时峰值幅度。而峰均比过大,将会增加A/D和D/A的复杂性,而且会降低射频功率放大器的效率。同时,在发射端,放大器的最大输出功率就限制了信号的峰值,这会在OFDM频段内和相邻频段之间产生干扰。

(3)所需线性范围宽 由于OFDM系统峰值平均功率比(PAPR)大,对非线性放大更为敏感,故OFDM调制系统比单载波系统对放大器的线性范围要求更高。

7

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库毕业论文(3)在线全文阅读。

毕业论文(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/1091228.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: