77范文网 - 专业文章范例文档资料分享平台

初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型(3)

来源:网络收集 时间:2018-09-20 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

在△MAD与△MEN中,

∴△MAD≌△MEN, ∴DM=MN,AD=EN, ∵AD=CD, ∴CD=NE,

全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com

最大最全最精的教育资源网 www.xsjjyw.com

∵CF=EF,∠DCF=∠DCB=90°, 在△DCF与△NEF中,

∴△MAD≌△MEN, ∴DF=NF,∠CFD=∠EFN, ∵∠EFN+∠NFC=90°, ∴∠DFC+∠CFN=90°, ∴∠DFN=90°, ∴DM⊥FM,DM=FM

(2)猜想:DM⊥FM,DM=FM, 证明如下:如图3,连接DF,NF, 连接DF,NF,

∵四边形ABCD是正方形, ∴AD∥BC,

∵点E、B、C在同一条直线上, ∴AD∥CN, ∴∠ADN=∠MNE, 在△MAD与△MEN中,

∴△MAD≌△MEN, ∴DM=MN,AD=EN, ∵AD=CD, ∴CD=NE, ∵CF=EF,

∵∠DCF=90°+45°=135°,∠NEF=180°﹣45°=135°, ∴∠DCF=∠NEF, 在△DCF与△NEF中,

全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com

最大最全最精的教育资源网 www.xsjjyw.com

∴△MAD≌△MEN, ∴DF=NF,∠CFD=∠EFN, ∵∠CFD+∠EFD=90°, ∴∠NFE+∠EFD=90°, ∴∠DFN=90°, ∴DM⊥FM,DM=FM.

点评: 本题考查了全等三角形的判定,正方形的性质,等腰直角三角形的判定和性质,本题中的难点是辅助线的作法,作好辅助线找对解题的方向是本题解答的关键所在。

类型3:以函数为载体的存在性探索问题

存在性的问题的探求方法一般是先假设存在,再根据假设和已知条件推理,最后下结论,若假设成立,则存在,若假设不成立,则不存在。21cnjy.com

【例题】(2015?葫芦岛)(第26题)如图,直线y=﹣x+3与x轴交于点C,与y

轴交于点B,抛物线y=ax+x+c经过B、C两点.21·cn·jy·com (1)求抛物线的解析式;

全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com

2

最大最全最精的教育资源网 www.xsjjyw.com

(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?

(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

考点: 二次函数综合题.

分析: (1)首先根据直线y=﹣x+3与x轴交于点C,与y轴交于点B,求出点B的坐标是(0,3),点C的坐标是(4,0);然后根据抛物线y=ax+x+c经过B、C两点,求出a\\c的值是多少,即可求出抛物线的解析式.

(2)首先过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,然后设点E的坐标是(x,﹣ x+x+3),则点M的坐标是(x,﹣ x+3),求出EM的值是多少;最后根据三角形的面积的求法,求出S△ABC,进而判断出当△BEC面积最大时,点E的坐标和△BEC面积的最大值各是多少即可.

(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.然后分三种情况讨论,根据平行四边形的特征,求出使得以P、Q、A、M为顶点的四边形是平行四边形的点P的坐标是多少即可.

解答: 解:(1)∵直线y=﹣x+3与x轴交于点C,与y轴交于点B, ∴点B的坐标是(0,3),点C的坐标是(4,0), ∵抛物线y=ax+x+c经过B、C两点, ∴

22

2

全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com

最大最全最精的教育资源网 www.xsjjyw.com

解得

2

∴y=﹣x+x+3.

(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,

∵点E是直线BC上方抛物线上的一动点, ∴设点E的坐标是(x,﹣ x+x+3), 则点M的坐标是(x,﹣ x+3), ∴EM=﹣x+x+3﹣(﹣x+3)=﹣x+x, ∴S△ABC=S△BEM+S△MEC =

22

22

=×(﹣x+x)×4 =﹣x+3x =﹣(x﹣2)+3,

∴当x=2时,即点E的坐标是(2,3)时,△BEC的面积最大,最大面积是3. (3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.

2

2

全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com

最大最全最精的教育资源网 www.xsjjyw.com

①如图2,

由(2),可得点M的横坐标是2, ∵点M在直线y=﹣x+3上, ∴点M的坐标是(2,), 又∵点A的坐标是(﹣2,0), ∴AM=

=,

∴AM所在的直线的斜率是:∵y=﹣x+x+3的对称轴是x=1,

2

∴设点Q的坐标是(1,m),点P的坐标是(x,﹣ x+x+3),

2

解得∵x<0,

或,

∴点P的坐标是(﹣3,﹣).

全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com

最大最全最精的教育资源网 www.xsjjyw.com

②如图3,

由(2),可得点M的横坐标是2, ∵点M在直线y=﹣x+3上, ∴点M的坐标是(2,), 又∵点A的坐标是(﹣2,0), ∴AM=

=,

∴AM所在的直线的斜率是:∵y=﹣x+x+3的对称轴是x=1,

2

∴设点Q的坐标是(1,m),点P的坐标是(x,﹣ x+x+3),

2

解得∵x>0,

或,

∴点P的坐标是(5,﹣).

全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com

最大最全最精的教育资源网 www.xsjjyw.com

③如图4,

由(2),可得点M的横坐标是2, ∵点M在直线y=﹣x+3上, ∴点M的坐标是(2,), 又∵点A的坐标是(﹣2,0), ∴AM=

∵y=﹣x+x+3的对称轴是x=1,

2

=,

∴设点Q的坐标是(1,m),点P的坐标是(x,﹣ x+x+3),

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型(3)在线全文阅读。

初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zhongkaochuzhong/156303.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: