设正方形边长为a,对角线长为b
b2
S正方形=a
2
2
考点六、梯形 (3~10分) 1、梯形的相关概念
一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。 梯形中不平行的两边叫做梯形的腰。 梯形的两底的距离叫做梯形的高。 两腰相等的梯形叫做等腰梯形。 一腰垂直于底的梯形叫做直角梯形。 一般地,梯形的分类如下: 一般梯形
梯形 直角梯形 特殊梯形
等腰梯形 2、梯形的判定
(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。 (2)一组对边平行且不相等的四边形是梯形。 3、等腰梯形的性质
(1)等腰梯形的两腰相等,两底平行。 (3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。 4、等腰梯形的判定
(1)定义:两腰相等的梯形是等腰梯形
(2)定理:在同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形。 5、梯形的面积 (1)如图,S梯形ABCD
由三角形面积公式可得: AB CD=AC BC
考点二、直角三角形的判定 (3~5分)
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 3、勾股定理的逆定理 如果三角形的三边长a,b,c有关系a b c,那么这个三角形是直角三角形。 考点三、锐角三角函数的概念 (3~8分) 1、如图,在△ABC中,∠C=90°
①锐角A的对边与斜边的比叫做∠A的正弦,记为sinA,即
2
2
2
1
(CD AB) DE 2
sinA
A的对边a
斜边c A的邻边b
斜边c A的对边a
A的邻边b
A的邻边b
A的对边a
(2)梯形中有关图形的面积: ①S ABD S BAC; ②S AOD S BOC; ③S ADC S BCD
6、梯形中位线定理
梯形中位线平行于两底,并且等于两底和的一半。
②锐角A的邻边与斜边的比叫做∠A的余弦,记为cosA,即
cosA
③锐角A的对边与邻边的比叫做∠A的正切,记为tanA,即
tanA
第十一章 解直角三角形
考点一、直角三角形的性质 (3~5分) 1、直角三角形的两个锐角互余
可表示如下:∠C=90° ∠A+∠B=90°
2、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30°
可表示如下:
BC=
④锐角A的邻边与对边的比叫做∠A的余切,记为cotA,即cotA 2、锐角三角函数的概念
锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数 2
2
2
1AB 2 ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: CD= D为AB的中点 4、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即a b c 5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90CD2 AD BD
AC2 AD AB
CD⊥BC2 BD AB 6、常用关系式
1
AB=BD=AD 2
(1)互余关系 sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系
sin2A cos2A 1
(3)倒数关系
tanA tan(90°—A)=1 (4)弦切关系 tanA=
sinA
cosA
5、锐角三角函数的增减性 当角度在0°~90°之间变化时,
(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) (4)余切值随着角度的增大(或减小)而减小(或增大) 考点四、解直角三角形 (3~5) 1、解直角三角形的概念
在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
2、解直角三角形的理论依据
在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c
(1)三边之间的关系:a b c(勾股定理) (2)锐角之间的关系:∠A+∠B=90° (3)边角之间的关系:
2
2
2
sinA
ababbaba,cosA ,tanA ,cotA ;sinB ,cosB ,tanB ,cotB ccbaccab
第十二章 圆
考点一、圆的相关概念 (3分)
1、圆的定义
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O” 考点二、弦、弧等与圆有关的定义 (3分) (1)弦
连接圆上任意两点的线段叫做弦。(如图中的AB) (2)直径
经过圆心的弦叫做直径。(如途中的CD) 直径等于半径的2倍。 (3)半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。 (4)弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。 大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示) 考点三、垂径定理及其推论 (3分)
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。 垂径定理及其推论可概括为:
过圆心 垂直于弦
直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧 (3
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。 2、圆的中心对称性
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说实用文档2016年北师大版中考数学知识点总结(9)在线全文阅读。
相关推荐: