。
3.2 边缘分类及性能分析
图像中的边缘通常分为:阶跃边缘、斜坡边缘、三角型屋脊边缘、方波型屋脊边缘、楼梯边缘、双阶跃边缘和双屋脊边缘
[1]。
(1)阶跃边缘
模型为: f(x)=cl(x) ,其中 c>0为边缘幅度, 为阶跃函数。若存在噪声,可以选用大尺度的模板平滑图像,不会影响边缘的定位。
(2)斜坡边缘
理想的斜坡边缘模型为:,其中S为边缘幅度,d为边缘宽度。斜坡边缘的检测不仅跟尺度有关,还与边缘本身的宽度有关,若边缘宽度比较小,则在小的平滑尺度下也能检测到边缘;无论是检测极值点还是过零点,边缘的定位都没有随着尺度的变化而变化。因此,对于斜坡边缘若存在噪声,可以选用大尺度的模板平滑图像。而不会影响到边缘定位。
(3)三角型屋脊边缘
模型为:,其中S为边缘幅度,d为边缘宽度。对于三角型屋脊边缘若存在噪声可以选用大尺度的平滑模板,而不会影响边缘的定位。
(4)方波型屋脊边缘
方波型屋脊边缘的模型为:,其中S为边缘幅度,d为边缘宽度。对于方波型屋脊边缘检测,不仅与平滑尺度有关,还与边缘宽度有关,若存在噪声,可以选用大尺度的平滑模板,而不会影响边缘的定位。
(5)楼梯边缘
楼梯边缘模型为:,其中c1、c2、l均为常数。这种检测的特点是平滑后的楼梯边缘不能准确定位,必须对检测到的边缘位置进行移位校正。
(6)双阶跃边缘
双阶跃边缘与方波型屋脊边缘相同,不同之处为:双阶跃边缘的边缘点为x=-d/2与 x=d/2,而方波型屋脊边缘的边缘点为 x=0。双阶跃边缘的两个边缘点通过检测一阶导数的两个极值点和二阶导数的两个过零点获得。因此对于双阶跃边缘大尺度下不能准确定位,必须对检测到的边缘位置进行移位校正。
(7)双屋脊边缘
模型为:,
其中:
S为边缘幅度,l为屋脊边缘的宽度,d为两个屋脊边缘间距。
实际图像中边缘类型的分类及边缘定位于平滑尺度的关系如表3.1所示。实际应用中可根据具体要求进行建模,选取合适的平滑尺度,尽可能解决“两难”问题。
如果已知目标物体的边缘类型,则可以根据该边缘类型一阶倒数和二阶倒数的特性以及与平滑尺度的关系只检测出目标物体所属的边缘类型,滤掉其他的边缘类型。
4 小结
边缘检测是基于边界的分割方法。由于图像边缘是图像最基本的特征,往往携带着图像中最重要的信息。因此边缘检测在计算机视觉、图像分析等应用中起着重要的作用,为人们描述或识别目标以及解释图像提供了一个有价值的特征参数。本文较详细地回顾了现有的边缘检测技术和方法,并对边缘检测的步骤作了总结。
在微分法边缘检测中,边缘定位与噪声滤除是两个相互矛盾的部分,很难同时得到很好的解决,这就是边缘检测的“两难”问题。从这个难题出发,对实际图像中可能出现的七种边缘类型分别进行数学模型描述。由于实际图像比较复杂,往往包含多种边缘类型,因此很难对其进行建模和分类。本章得到的结论为边缘类型的分类提供了依据。若能预先对边缘类型进行分类,则可选取合适的平滑尺度,较好地解决边缘检测的“两难”问题。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说计算机数字图像中边缘检测算法综合研究(4)在线全文阅读。