77范文网 - 专业文章范例文档资料分享平台

人教版七下数学之 实数全章复习与巩固(提高)知识讲解

来源:网络收集 时间:2020-04-17 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

实数全章复习与巩固(提高)

【学习目标】

1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根. 2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根. 3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化. 4.能用有理数估计一个无理数的大致范围. 【知识网络】

【要点梳理】

【高清课堂:389318 实数复习,知识要点】 要点一、平方根和立方根 类型 项目 被开方数 符号表示 平方根 非负数 立方根 任意实数 3?a 一个正数有两个平方根,且互为相反数; 零的平方根为零; 负数没有平方根; a 性质 一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零; (a)2?a(a?0)重要结论 (3a)3?a33?a(a?0) a?a????a(a?0)2a3?a?a??3a

要点二、实数

有理数和无理数统称为实数. 1.实数的分类 按定义分: 实数??有理数:有限小数或无限循环小数?无理数:无限不循环小数

按与0的大小关系分:

??正有理数正数???正无理数?? 实数?0

?负有理数?负数????负无理数? 要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其

中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.

(2)无理数分成三类:①开方开不尽的数,如5,32等;

②有特殊意义的数,如π;

③有特定结构的数,如0.1010010001…

(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形

式.

(4)实数和数轴上点是一一对应的.

2.实数与数轴上的点一 一对应.

数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.

3.实数的三个非负性及性质:

在实数范围内,正数和零统称为非负数。我们已经学习过的非负数有如下三种形式: (1)任何一个实数a的绝对值是非负数,即|a|≥0; (2)任何一个实数a的平方是非负数,即a≥0;

(3)任何非负数的算术平方根是非负数,即a?0 (a?0).

非负数具有以下性质: (1)非负数有最小值零;

(2)有限个非负数之和仍是非负数;

(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算:

数a的相反数是-a;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.

有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较:

有理数大小的比较法则在实数范围内仍然成立.

法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数

大;

法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反

而小;

法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 【典型例题】

2

类型一、有关方根的问题

【高清课堂:389318 实数复习,例1】

1、(2015春?仙桃校级期末)一个正数的x的平方根是2a﹣3与5﹣a,求a和x的值. 【思路点拨】根据平方根的定义得出2a﹣3+5﹣a=0,进而求出a的值,即可得出x的值. 【答案与解析】

解:∵一个正数的x的平方根是2a﹣3与5﹣a, ∴2a﹣3+5﹣a=0, 解得:a=﹣2, ∴2a﹣3=﹣7,

∴x=(﹣7)=49.

【总结升华】此题主要考查了平方根的定义,正确把握定义是解题关键. 举一反三: 【变式1】已知y?【答案】

解:由题意得:

2

x?2?2?x?3,求yx的平方根。

?x?2?0 解得x=2 ??2?x?0∴y=3,y?3?9,y的平方根为±3.

【变式2】若33x?7和33y?4互为相反数,试求x?y的值。 【答案】

解:∵33x?7和33y?4互为相反数, ∴3x-7+3y+4=0

∴3(x?y)=3,x?y=1.

2、已知M是满足不等式?3?a?6的所有整数a的和,N是满足不等式x?的最大整数.求M+N的平方根. 【答案与解析】 解:∵?3?a?x2x37?226的所有整数有-1,0,1,2

所有整数的和M=-1+1+0+2=2 ∵x?37?237?2≈2,N是满足不等式x?的最大整数. 22 ∴N=2

∴M+N=4,M+N的平方根是±2.

【总结升华】先由已知条件确定M、N的值,再根据平方根的定义求出M+N的平方根. 类型二、与实数有关的问题

3、已知a是10的整数部分,b是它的小数部分,求??a???b?3?的值. 【思路点拨】一个数是由整数部分+小数部分构成的.通过估算10的整数部分是3,那么它的小数部分就是10?3,再代入式子求值. 【答案与解析】

解:∵a是10的整数部分,b是它的小数部分,3?10?4

∴a?3,b?10?3 ∴??a???b?3????3??32332?10?3?3?2??27?10??17.

【总结升华】可用夹挤法来确定,即看10介于哪两个相邻的完全平方数之间,然后开平方.这个数减去它的整数部分后就是它的小数部分. 举一反三:

【变式】 (2015?杭州)若k<<k+1(k是整数),则k=( ) A.6 B.7 C.8 D.9 【答案】D. 解:∵k<<k+1(k是整数),9<<10,∴k=9.

4、阅读理解,回答问题.

在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.

例如:在比较m?1与m的大小时,小东同学的作法是: ∵m2?1?m2?m2?1?m2?1 ∴m?1?m

2请你参考小东同学的作法,比较43与(2?3)的大小.

22????22【思路点拨】仿照例题,做差后经过计算判断差与0的关系,从而比较大小. 【答案与解析】 解:∵43?2?3??2?43?(4?43?3)??7?0

2∴43<(2?3)

【总结升华】实数比较大小常用的有作差法和作商法,根据具体情况加以选择.

举一反三:

【高清课堂:389318 实数复习,例5】 【变式】实数a在数轴上的位置如图所示,则a,?a,12 ; ,a的大小关系是:a-1【答案】

a0

1?a?a2??a; a类型三、实数综合应用

25、已知a、b满足2a?8?|b?3|?0,解关于x的方程?a?2?x?b?a?1。

【答案与解析】

解:∵2a?8?|b?3|?0

∴2a+8=0, b-3=0,解得a=-4, b=3,代入方程:

∴?a?2?x?b2?a?1

【总结升华】先由非负数和为0,则几个非负数分别为0解出a、b的值,再解方程. 举一反三:

【变式】设a、b、c都是实数,且满足(2?a)?a?b?c?c?8?0, 求代数式2a?3b?c的值。

【答案】

解:∵(2?a)2?a2?b?c?c?8?0

22?2x?3??5x?4?2?a?0?a?2?2? ∴?a?b?c?0,解得?b?4

?c?8?0?c??8??∴2a?3b?c?4?12?8?0. 【高清课堂:实数复习,例6】

6、阅读材料:

学习了无理数后,某数学兴趣小组开展了一次探究活动:估算13的近似值. 小明的方法:

22∵9?13?16,设13?3?k(0?k?1).∴(13)?(3?k).

∴13?9?6k?k.∴13?9?6k.解得 k?244.∴13?3??3.67. 66问题:(1)请你依照小明的方法,估算41的近似值;

(2)请结合上述具体实例,概括出估算m的公式:已知非负整数a、b、m,若

a?m?a?1,且m?a2?b,则m?_________________(用含a、b的代

数式表示);

(3)请用(2)中的结论估算37的近似值. 【答案与解析】 解:(1)∵36?41?49,设41?6?k(0?k?1).

22∴(41)?(6?k).

∴41?36?12k?k.∴41?36?12k.

25. 125∴41?6??6.42.

12解得 k?(2)∵a?m?a?1,设m?a?k(0?k?1).

22∴(m)?(a?k).

∴m?a?2ak?k. ∴m?a?2ak.

对比m?a?b,b?2ak,k?∴m?a?22222b 2ab 2a(3)37?6?1,

∴a?6,b?1, ∴37?6?1?6.083. 12b. 2a【总结升华】此题比较新颖,关键是通过阅读材料快速掌握估值的方法.(2)问中要对比式子,找准a和b,表示出k?

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库人教版七下数学之 实数全章复习与巩固(提高)知识讲解在线全文阅读。

人教版七下数学之 实数全章复习与巩固(提高)知识讲解.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/979586.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: