77范文网 - 专业文章范例文档资料分享平台

基于HFSS的圆锥喇叭天线设计(2)

来源:网络收集 时间:2019-06-11 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

在无线电问世之前,船舶在海上是完全孤立的,当灾难来袭时,即使是岸上或邻近船舶上的人也无法给予提醒。随着第二次世界大战期间雷达的出现,厘米波得以普及,无线电频谱才得到了更为充分地利用。

如今,数以千计的通信卫星正负载着天线运行于不同的轨道中,犹如土星的光环围绕土星那样围绕着地球;手持的全球定位卫星接收机能够为任何地面或空中的用户不分昼夜晴雨地提供经度、纬度和高度信息,其精确程度达到厘米级;载有天线阵的探测器在地面系统的指挥下已经访问了太阳系的其他行星;飞机和船舶随身携带的天线为其提供了必不可少的通信系统;移动电话借助于天线为人们提供任何地点和任何人的通信。随着人类活动向太空扩展,对天线的需求也将增长到史无前例的程度,天线将在未来的生活中担任着越来越重要的角色。

1.1.2喇叭天线的发展和应用

在微波波段,采用各种波导传输电磁波能量,常用的波导是矩形和圆形截面波导,也有用椭圆形截面波导的。随后人们发现终端开口的波导也可以向外辐射电磁波,于是就有了波导终端开口构成的波导辐射器,这种馈源是传输线波导的自然发展。后来为了改善方向性,压窄方向图和获得较高的增益,需要增大波导辐射器的口径面积。将波导终端做成逐渐张开的形状,这就是喇叭天线。普通喇叭的方向图在各个平面内是不相同的,两个主平面内相位中心也不重合。喇叭作为反射面天线馈源时,要求它有确定的相位中心和接近圆对称的初级方向图,这样,旋转对称的反射面天线,可以获得接近圆对称的次级方向图,具有良好的电性能。而利用高次模和主模相结合的多模喇叭和在喇叭内壁开槽的波纹喇叭,辐射方向图可以做到圆对称,且工作频带宽。这两种形式的喇叭,副瓣电平低,交叉极化分量小,相位特性良好。用它们作馈源,可使反射面天线效率提高到75%~80%。

喇叭天线的出现与早期应用可追溯到十九世纪后期,到了二十世纪三十年代,由于第二次世界大战期间对微波和波导传输线的兴趣,喇叭天线便开始发展起来。20 世纪 90 年代,随着军事斗争对毫米波制导需求的增长,以及在研制毫米波发射机和接收机方面的需求,喇叭天线获得了广泛的研究。目前,喇叭天线已大量用作遍及全世界安装的大型射电望远镜,以及卫星跟踪和通信反射面天线的馈电单元。除此之外,它也是相控阵的常用单元,并用作对其它天线进行校准和增益测试的标准天线。

喇叭天线由一段均匀波导和一段喇叭组成,可以看成是由横截面逐渐扩展而形成的一种天线,一般分为矩形喇叭和圆锥喇叭两类。矩形喇叭天线又有 H 面扇形喇叭、E 面扇形喇叭和角锥喇叭之分。 由于上述普通矩形和圆锥喇叭天线具有结构简单,功率容量大和高增益的优点,所以在微波测量系统中被大量的用作标准测量天线。

1.2天线的基础知识

描述天线工作特性的参数称为天线电参数,又称电指标。他们是定量衡量天线性能的尺度。我们需要了解天线电参数。

大多数天线电参数是针对发射状态规定的,以衡量天线把高频电流能量转变成空间电波能量以及定向辐射的能力。

1.2.1天线的原理

当导体上通以高频电流时,在其周围空间会产生电场与磁场。按电磁场在空间的分布特性,可分为近区,中间区,远区。设R为空间一点距导体的距离,在R《λ/2π时的区

域称近区,在该区内的电磁场与导体中电流,电压有紧密的联系。在R》λ/2π的区域称为远区,在该区域内电磁场能离开导体向空间传播,它的变化相对于导体上的电流电压就要滞后一段时间,此时传播出去的电磁波已不与导线上的电流,电压有直接的联系了,这区域的电磁场称为辐射场。发射天线正是利用辐射场的这种性质,使传送的信号经过发射天线后能够充分地向空间辐射。

在平行双线的传输线上为了使只有能量的传输而没有辐射,必须保证两线结构对称,线上对应点电流大小和方向相反,且两线间的距离《π。要使电磁场能有效地辐射出去,就必须破坏传输线的这种对称性,如采用把二导体成一定的角度分开,或是将其中一边去掉等方法,都能使导体对称性破坏而产生辐射。如图1-2,图中将开路传输或距离终端π/4处的导体成直状分开,此时终端导体上的电流已不是反相而是同相了,从而使该段导体在空间点的辐射场同相迭加,构成一个有效的辐射系统。这就是最简单,最基本的单元天线,称为半波对称振子天线,其特性阻抗为75Ω。电磁波从发射天线辐射出来以后,向四面传播出去,若电磁波传播的方向上放一对称振子,则在电磁波的作用下,天线振子上就会产生感应电动势。如此时天线与接收设备相连,则在接收设备输入端就会产生高频电流。这样天线就起着接收作用并将电磁波转化为高频电流,也就是说此时天线起着接收天线的作用,接收效果的好坏除了电波的强弱外还取决于天线的方向性和半边对称振子与接收设备的匹配。

图1–2 半波对称阵子天线

1.2.2天线的辐射

天线辐射球面波在以天线为核心的坐标系统的径向方向上传播。在大的距离上,球面波可以近似平面波。平面波是有用的,因为他们把问题简化了。他们不是自然的,然而,因为它们需要无限的功率。

该玻印廷矢量描述两个方向的传播和功率密度的电磁波。这是从矢量穿过产生的电场和磁场中发现的,并标注为S:

S = E ×H* W/m2

(1–1)

均方根(RMS)值是用来表达场的重要性。H*是复杂的共轭的磁场相。磁场在远区场上是与电场成正比的。比例常数是η,自由空间中的阻抗(η = 376.73Ω):

S?S?E2? W/m2

(1–2)

因为玻印廷矢量是两个场的矢量的产物,这是正交的两个场以及三重定义了一个右手坐标系统:(E, H, S)。

考虑一对以天线为核心的同心球形。靠近天线的场减少为1/R, 1/R2,1/R3等等。恒指定的条件将要求功率辐射与辐距离和将不会被保存的功率一起增长。场方面的比例1/R2,1/R3更高,功率密度随距离减少,比面积增加的速度快。在球形里面的能源大于

在球形外部的能量。这些能量不辐射,但是代替集中在天线周围,它们是近区场的条件。只有1/R2条件的玻印廷矢量(1/R场条件)所代表的辐射功率,因为该球形的面积的增长为R2,并给出了一个常数的积。所有辐射功率流经内部球体将传播到球形的外部。符号的输入抗依赖于近区场的场类型的优势:电气(电容式)或磁场(电感)。在共振(零抗)上储存的能量是平等的,因为是近区场。存储场的增多增加了电路的Q和缩小阻抗带宽。

从天线到目前为止,我们只考虑辐射的场和功率密度。功率流是相同的通过同心的球形:

224?R1S1,avg?4?R2S2,avg

2(1–3)

平均功率密度是成正比于1/R的。考虑在同一坐标的角度上的两个球形的面积的差异。天线的辐射,只有在径向方向;因此,没有功率可能在θ或φ方向上游走的。功率在

面积中的通量管上游走,并如下,不仅平均坡印亭矢量,而且功率密度的每个部分都是与1/R2成正比的:

2S1R12sin?d?d??S2R2sin?d?d?

2(1–4)

自从在一个辐射波S是成正比于1/R的之后,E是成正比于1/R。界定辐射强度以此来消除1/R的依赖是很方便的:

U(θ, φ) = S(R, θ, φ) f W/solid angle (1–5)

辐射强度,只取决于辐射的方向和在所有的距离上保持不变。一探针天线测量相对辐射强度(方向图)是通过在天线的周围移动轨迹在一个圆圈(常数 R)上。当然很多时候天线在旋转而且探头是固定的。

方向图随着球面坐标系的常数角度就叫做锥形(常数θ)或大圈(常数φ)。大圈削减当φ=0°或φ= 90°是主要的平面方向图。其他命名削减也使用,但他们的名字取决于特定的测量定位,而且它是必要的注释,这些方向图小心地在人们对不同定位器的测量方式之间去避免造成混乱。方向图通过采用3个规模来衡量的:线性(功率),平方根(磁场强度),及分贝(dB)。该分贝的规模是最常用的,因为它揭示了更多的低层次的反应(旁瓣)。

1.2.3方向系数

方向系数是能定量的表示天线定向辐射能力的电参数。它的定义为:在同一距离及相同辐射功率的条件下,某天线在最大辐射方向上的辐射功率密度Smax和无方向性天线的辐射功率密度So之比,记为D。

在最大辐射方向上

SmaxD??So2EmaxEo22 (1–6)

Emax=

60PrD r(1–7)

上式表明,天线的辐射场与PrD的平方根成正比,所以对于不同的天线,若它们的辐射功率相同,则在同是最大辐射方向且同一r处的观察点,辐射场之比为

D1Emax1=

Emax2D2(1–8)

若要求他们在同一r处观察点辐射场相等,则要求 Pr1D2 ?Pr2D1即所需要的辐射功率与方向系数成反比。 方向系数的最终计算公式为

4?(1–9)

D=

?2?0 (1–10) ???,?Sin?d?d??0F?2显然,方向系数与辐射功率在全空间的分布状态有关,要使天线的方向系数大,不仅

要求主瓣窄,而且要求全空间的副瓣电平小。

1.2.4天线效率

一般来说,载有高频电流的天线导体及其绝缘介质都会产生损耗,因此输入天线的实功率并不能全部转换成电磁波能量。可以用天线效率来表示这种能量转换的有效程度。天线效率定义为天线辐射功率Pr与输入功率Pin之比,记为ηA,即

Pr ??APin (1–11)

辐射功率与辐射电阻之间的联系公式为Pr= I2Rr, 依据电场强度与方向函数的联系公式

60I (1–12) E(?,?,?)?f(?,?)

r则辐射电阻的一般表达式为

302?Rr???0?f0?2(?,?)sin?d?d?

2max(1–13)

则方向系数与辐射电阻之间的联系为:

D?120fRr (1–14)

类似于辐射功率和辐射电阻之间的关系,也可将损耗功率Pl与损耗电阻Rl联系起来,即

Pl=

Rl是归算于电流I的损耗电阻,这样

1I2Rl 2(1–15)

PrRr (1–16) ?APr?PlRr?Rl注意,上式中Rr,Rl应归算于同一电流。

一般来讲,损耗电阻的计算是比较困难的,由上式可以看出,若要提高天线效率,必须尽可能的减小损耗电阻和提高辐射电阻。

1.2.5增益系数

方向系数只是衡量天线定向辐射特性的参数,它只决定于方向图;天线效率则表示了天线在能量上的转换效能;而增益系数则表示了天线的定向收益程度。

增益系数的定义是:在同一距离及相同输入功率的条件下,某天线在最大辐射方向上的辐射功率密度Smax和理想无方向性天线的辐射功率密度So之比,记为G。用公式表示如下:

??

SmaxG??SoEE2max2o (1–17)

在有效情况下,功率密度为无耗时的ηA倍。由此可见,增益系数是综合衡量天线能量转换效率和方向特性的参数,它是方向系数与天线效率的乘积。

由于发射机的输出功率是有限的,因此在通信系统的设计中,对提高天线的增益常常抱有很大希望。频率越高的天线越容易得到很高的增益。

1.2.6输入阻抗

天线和馈线的连接处称为天线的输入端或馈电点。对于线天线来说,天线输入端的电压与电流的比值称为天线的输入阻抗。对于口面型天线,则常用馈线上电压驻波比来表示天线的阻抗特性。一般,天线的输入阻抗是复数,实部称为输入电阻,以Ri表示;虚部称为输入电抗,以Xi表示。

天线的输入电抗表征储藏在天线近区场中的功率。电尺寸远小于工作波长的天线,其输入电抗很大,例如短偶极天线具有很大的容抗;电小环天线具有很大的感抗;直径很细的半波振子输入阻抗约为73.1+j42.5欧。在实际应用中,为了便于匹配,一般希望对称振子的输入电抗为零,这时的振子长度称为谐振长度。谐振半波振子的长度比自由空间中的半个波长略短一些,工程上一般估计缩短5%。谐振半波振子的输入阻抗约为70欧。 天线的输入阻抗与天线的几何形状、尺寸、馈电点位置、工作波长和周围环境等因素有关。线天线的直径较粗时,输入阻抗随频率的变化较平缓,天线的阻抗带宽较宽。 研究天线阻抗的主要目的是为实现天线和馈线间的匹配。欲使发射天线与馈线相匹配,天线的输入阻抗应该等于馈线的特性阻抗。欲使接收天线与接收机相匹配,天线的输入阻抗应该等于负载阻抗的共轭复数。通常接收机具有实数的阻抗。当天线的阻抗为复数时,需要用匹配网络来除去天线的电抗部分并使它们的电阻部分相等。 当天线与馈线匹配时,由发射机向天线或由天线向接收机传输的功率最大,这时在馈线上不会出现反射波,反射系数等于零,驻波系数等于1。天线与馈线匹配的好坏程度用天线输入端的反射系数或驻波比的大小来衡量。对于发射天线来说,如果匹配不好,则天线的辐射功率就会减小,馈线上的损耗会增大,馈线的功率容量也会下降,严重时还会出现发射机频率“牵引”现象,即振荡频率发生变化。

口面型天线的阻抗特性用馈线上某点的电压驻波比或反射系数来表示。当反射系数为零、驻波系数为 1时,称作匹配。对口面型天线来说,为了达到匹配状态,应当在所有产生反射的不连续点附近加上能够产生相反反射的匹配元件,使它们相互抵消。天线的频

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库基于HFSS的圆锥喇叭天线设计(2)在线全文阅读。

基于HFSS的圆锥喇叭天线设计(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/655774.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: