第八章 生物信号处理 第一节 生物信号概述
1-1概述
生物信号是指存在于具有生命现象的生物体中的各种信号。而人体的生物信号又是主要的研究对象。人体是由数以万亿量的细胞组成的,而细胞是由无数结构各异的生物分子精巧组合而成的高度复杂的结构体系。具有多种不同的特殊结构和功能,人体的各种细胞组成不同的组织,如结缔组织、血管、神经、内皮、肌肉、骨骼。再由组织和细胞构成各种器官如脑、心、肺、肝、胆、胰、胃、肠、脾、肾、膀胱等等。人体的各种器官和组织又组成了若干功能系统,如循环系统、血液系统、呼吸系统、消化系统、泌尿系统、神经系统、内分泌系统、生殖系统等。人体正是由生物分子、细胞、组织、器官和系统依靠各层次上的活动和功能及其有机的结合,从而实现生物体的生命过程。因此人体的生物信号包括生物体分子水平、细胞水平、器官水平和系统水平各层次的生物信息。例如,基于分子水平的各种酶、激素、凝血因子、抗体等的含量和活性,基于细胞电活动产生的心电、脑电、肌电、眼电、胃电等,基于伴随体内电荷运动产生的心磁、脑磁、肌磁、眼磁等,基于细胞代谢过程中的细胞的形态、功能和数量,基于组织代谢过程中的血ph值、二氧化碳分压、氧分压、血氧饱和度、蛋白质、葡萄糖、肌酐、尿素、胆红素、尿胆原、胆固醇、甘油三酯、酮体及各种电解质的含量等, 基于生命活动中产生的心率、血压、血流、脉搏、心音、呼吸、体温等信号。生物信号还包括器官
1
的形态、大小及器官的动力学改变等等。 1-2生物信号的记录
尽管人体某些细胞的静息电位和动作电位的幅度有几十毫伏, 但是在人体的体表能记录到的绝大多数的生物信号的电位幅度都比较小,原因是大量神经细胞被“绝缘”在颅腔、椎管或神经鞘内,肌肉被导电性能不良的肌筋膜包裹着,心肌外面也有着电阻率较高的胶原纤维构成的心包。 因此,在体表记录到的心电信号仅几个毫伏,脑电信号在微伏级水平。表1-2列出在一定频率范围记录到的几种常见生理信号的幅度。
表1-2 几种生物电信号的幅频范围
生物信号 电压幅度(mV) 磁场强度(T) 频率范围(Hz) 10-10 10-12 10-11 10-12 10-13 0.1-250 0.1-100 0-150 0-50 0-1000 0.1-100 0.1-100 0-1 心电图ECG 0.5-4 心动图 脑电图EEG 0.005-0.3 眼电图EOG 0.05-3.5 肌电图EMG 0.1-5 肌动图 脑干诱发电 0.0005-0. 1 胃电图EGG 0.01-1 人体器官的生物磁信号最大仅为10-10T,而地球的静磁场为10-5
~10-6 T,生物磁信号的记录是基于超导量子干涉技术,目前主要用于基础理论研究。
2
生物信号的检测分无创测量,有创测量和微创测量。无创测量又称为非侵入式测量,其测量系统的探测部分不侵入生物体组织,几乎不造成机体的创伤如心电、脑电、脑干诱发电、无创血压、体温、脉搏、B型及M型超声检查等等。无创测量由于不破坏皮肤,不侵入机体,因此安全性好。但是,无创测量多数为间接测量,体内信息需经体表传递到测量系统,被测信息在体内传输过程中容易产生失真,而且易受外界电场或磁场的干扰,如工频干扰、手术室中的高频电刀、微波器械等的干扰。故测量的准确性和稳定性相对较低。有创测量又称为侵入式测量,其测量系统的探测部分需侵入生物体内,会造成机体不同程度的创伤。如中心静脉压测定、心血管造影、导管内激光和超声术等。有创测量一般是直接测量,被测信号不需经体内容积导电和皮肤的复杂传输途径,因而信息的失真小,测量结果准确度和可靠性高。微创测量主要有植入式测量和内镜检查。植入式测量是将测量系统的部分或全部经手术埋植于机体内,多用于长期连续监测生物体的功能状态和控制心脏起博器等人工器官装置及某些自动输药系统。由于植入式测量在测量过程中创面已经愈合,故安全性和可接受性均好于有创测量。但要注意对植入性材料的电化学性能和生物相容性的影响。内镜检查主要指支气管镜、胃镜、肠镜、膀胱镜等,它们对机体的损伤很小。由于直接观测体腔内的形态,还可以做组织活检,因此信息失真小,测量准确性高。
另外,人体各器官形态的生物信息获取还可采用X线、CT、MRI、DSA、超声、放射性核数扫描等,器官内腔的信息获取可采用各种内
3
镜检查等。 1-3生物信号转换
生物信号的获取通常采用各类传感器,将机体的各种信号转变为易于放大、传输、处理、存贮、显示的电信号。生物信号转换的传感器很多,最常见的有: (1) 物理传感器
利用物理性质和物理效应制成的传感器。如常作为体表电极用于记录心电、脑电、肌电的银/氯化银电极,用于血压检测的压力传感器,用于血氧饱和度检测的指套式光电传感器,用于肺功能检测的气压传感器,用于体温测量的温度传感器,用于血细胞形态分类的偏振光传感器等。 (2) 化学传感器
化学传感器是把人体内某些化学成分、浓度等转变为与之相应的电学量的器件。如血气分析仪中的ph电极,选择性透过二氧化碳气体的二氧化碳电极,选择性透过氧的氧电极, 电解质分析仪中的钠、钾、氯离子敏感电极等。 (3)生物传感器
生物传感器利用某些生物活性物质具有的选择性识别待测生物化学物质的能力而制成的传感器,是一种以固定化的生物体成份(酶、激素、抗原、抗体或细胞)作为敏感元件的传感器。如酶传感器中的常分酶电极,血糖检测仪中的酶敏感电极,还有酶敏场效应管等。 1-4生物信号改进
4
基于人体生物信号的幅值很小,而且在采集生物信号的同时还存在着各种噪声和干扰因素。另外,人体各种幅值不同的生物信号又互相交织在一起。因此必须通过各种方法改进生物信号的质量,以获取尽可能逼真的生物信号。常见的方法有 (一) 电子技术方法
(1)采用低噪声场效应管作为输入级的专用集成电路来提高放大器的输入阻抗,降低元件级的输入噪声,提高共模抑制比,提高信噪比。 (2)采用高通、低通、带通或带阻滤波技术,滤除各种干扰,现在还采用数字滤波技术,性能更优越。
(3)采用数字图像处理技术提高影像图像的信息质量。 (二) 数学方法
各种数学方法的运用始终贯穿在生物信号检测的处理过程中。如对非线性的生物信息,通过拉普拉斯变换方法将其按线性处理,将检测到的以时间域表示的生物信息通过傅立叶变换转换到频率域上。另外在信号的标准曲线拟合及数字图像处理中信号变换和图像重建等也要用到大量的数学方法。 (三) 方法学
为了检测脑干、间脑、和枕叶的生物电信号,采用了刺激诱发电的方法。用声音、光或体感(痛、温感觉)去刺激被检者的机体,在刺激的同时同步记录脑干的早、中、晚潜伏期的脑干生物电信号,再通过叠加平均技术获得相应的脑干信息。在生化分析仪检测过程中,有时很难直接检测某种含量很少的酶,于是通过酶促反应来检测。即
5
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库生物信号处理(yuanshi)在线全文阅读。
相关推荐: