77范文网 - 专业文章范例文档资料分享平台

汽车制动系统毕业设计(3)

来源:网络收集 时间:2019-05-18 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

中国农业大学学士论文 第2章 制动系统方案论证分析与选择 两蹄共用的,则称为双向增力式制动器(如图2-5所示)。对双向增力式制动器来说不论汽车前进制动或倒退制动,该制动器均为增力式制动器。

双向增力式制动器在大型高速轿车上用的较多,而且常常将其作为行车制动与驻车制动功用的制动器,但行车制动是由液压经制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过钢索拉绳及杠杆等机械操纵系统进行操纵。双向增力式制动器也广泛用于汽车的中央制动器,因为驻车制动要求制动器正向、反向的制动效能都很高,而且驻车制动若不用于应急制动时也不会产生高温,故其热衰退问题并不突出。

但由于结构问题使它在制动过程中散热和排水性能差,容易导致制动效率下降。因此,在轿车领域上已经逐步退出让位给盘式制动器。但由于成本低,仍然在一些经济型车中使用,主要用于制动负荷比较小的后轮和驻车制动。

图2-5 双向增力式制动器

2.1.2 盘式制动器

盘式制动器按摩擦副中定位原件的结构不同可分为钳盘式和全盘式两大类。 1)钳盘式

钳盘式制动器按制动钳的结构形式不同可分为定钳盘式制动器、浮钳盘式制动器等。 ?定钳盘式制动器:这种制动器中的制动钳固定不动,制动盘与车轮相连并在制动钳体开口槽中旋转。具有以下优点:除活塞和制动块外无其他滑动件,易于保证制动钳的刚度;结构及制造工艺与一般鼓式制动器相差不多,容易实现鼓式制动器到盘式制动器的改革,能很好地适应多回路制动系的要求。

?浮钳盘式制动器:这种制动器具有以下优点:仅在盘得内侧具有液压缸,故轴向尺寸小,制动器能进一步靠近轮毂;没有跨越制动盘的油道或油管,液压缸冷却条件好,所以制动液汽化的可能性小;成本低;浮动盘的制动块可兼用驻车制动。

2)全盘式

7

中国农业大学学士论文 第2章 制动系统方案论证分析与选择 在全盘制动器中,摩擦副的旋转元件及固定元件均为圆盘形,制动时各盘摩擦表面全部接触,其作用原理与摩擦式离合器相同。由于这种制动器散热条件较差,其应用远远没有钳盘式制动器广泛。

盘式制动器与鼓式制动器相比,有以下优点: 1)制动效能稳定性好;

2)制动力矩与汽车运动方向无关;

3)易于构成双回路,有较高的可靠性和安全性; 4)尺寸小、质量小、散热好;

5)制动衬块上压力均匀,衬块磨损均匀; 6)更换衬块工作简单容易。

7)衬块与制动盘间的间隙小,缩短了制动协调时间。 8)易于实现间隙自动调整。

综合以上优缺点最终确定本次设计采用前后盘式制动器,且均为浮钳盘式制动器。

2.2 制动驱动机构的机构形式选择

根据动力源的不同,制动驱动机构可分为简单制动、动力制动及伺服制动三大类型。而力的传递方式又有机械式、液压式、气压式、气压-液压式的区别。 2.2.1 简单制动系

简单制动系即人力制动系,是靠四级作用于制动踏板上或手柄上的力作为制动力源。而传力方式有机械式和液压式两种。

机械式的靠杆系或钢丝绳传力,其结构简单,造假低廉,工作可靠,但机械效率低,因此仅用于中、小型汽车的驻车制动装置中。

液压式的简单制动系统通常称为液压制动系,用于行车制动装置。其优点是作用滞后时间短(0.1-0.3s),工作压力大(可达10MPa-12MPa),缸径尺寸小,可布置在制动器内部作为制动蹄的张开机构或制动块的压紧机构,使之结构简单、紧凑、质量小、造价低。但其有限的力传动比限制了它在汽车上的适用范围。另外,液压管路在过渡受热时会形成气泡而影响传输,即产生所谓“气阻”使制动效能降低甚至失效;而当气温过低时(-25摄氏度和更低时),由于制动液的粘度增大,使工作的可靠性降低,以及当有局部损坏时,使整个系统都不能继续工作,液压式简单制动系曾广泛用于轿车、轻型及以下的货车和部分中型货车上。但由于操作较沉重,不能适应现代汽车提高操作轻便性的要求,故当前仅多用于微型汽车上,在轿车和轻型汽车已经极少采用。

2.2.2 动力制动系

动力制动系是以发动机动力形成的气压或液压势能作为汽车制动的全部力源进行制动,而

8

中国农业大学学士论文 第2章 制动系统方案论证分析与选择 司机作用于制动踏板或手柄上的力仅用于对制动回路中控制元件的操纵。在简单制动系中的踏板力与其行程间的发比例关系在动力制动系中便不复存在。

动力制动系有气压制动系、气顶液式制动系和全液压动力制动系3种。 1)气压制动系

气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力,且主车与被拖的挂车以及汽车列车之间制动驱动系统的连接装置结构简单、连接和断开均很方便,因此被广用于总质量为8t以上尤其是15t以上的载货汽车、越野汽车和客车上,但气压制动系必须采用空气压缩机、储气筒、制动阀等装置,使其结构复杂、笨重、轮廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长(0.3s-0.9s),因此,当制动阀到制动气室和储气罐的距离较远时,有必要加设启动的第二控制元件--继动阀(即加速阀)以及快放阀;管路工作压力较低(一半为0.5MPa-0.9MPa)。因而制动器室的直径达,只能置于制动器之外,在通过杆件及凸轮或锲块驱动制动蹄,使非簧载质量增大;另外制动气室排气时也有较大噪声。

2)气顶液式制动系

气顶液式制动系是动力制动系的另一种型式,即利用气压系统作为普通的液压制动系统主缸的驱动力源的一种制动驱动机构,它兼有液压制动和气压制动的主要优点。由于其气压系统的管路短,故作用滞后时间也较短。显然,其结构复杂、质量大、造价高,故主要用于重型汽车上,一部分总质量为9t-11t的中型汽车上也有所采用。

3)全液压动力制动系

全液压动力制动系除具有一般液压制动系统的优点外,还具有操作轻便、制动反应快、制动能力强、受气阻影响较小、易于采用制动力调节装置和防滑移装置,及可与动力转向、液压悬架、举升机构及其他辅助设备共同液压泵和储油等优点。其结构复杂、精密件多,对系统的密封性要求也较高,故并未得到广泛应用,目前仅用于某些高级轿车、大型客车以及极少数的重矿用自卸汽车上。

2.2.3 伺服制动系

伺服制动系是在人力液压制动系的基础上加设一套除其他能源提供的助力装置,使人力与动力可兼用,即兼用人力和发动机动力作为制动能源的制动系,在正常情况下,其输出工作压力主要由动力伺服系统产生,而在动力伺服系统失效时,仍可全由人力驱动液压系统产生一定程度的制动力。因此,在中级以上的轿车及轻、中型客、货汽车上得到了广泛的应用。

按伺服系统能源的不同,又有真空伺服制动系、气压伺服制动系和液压伺服制动系之分,其伺服能源分别为真空能(负气压能)、气压能和液压能。 根据赛规及经验要求,确定本次设计采用简单液压制动。

9

中国农业大学学士论文 第2章 制动系统方案论证分析与选择 2.3 液压分路系统的形式的选择

图2-1 液压分路系统形式

为了提高制动工作的可靠性,应采用分路系统,即全车的所有行车制动器的液压或气压管路分为两个或更多的相互独立的回路,其中一个回路失效后,仍可利用其他完好的回路起制动作用。

双轴汽车的双回路制动系统有以下常见的物种分路形式(如图2-1所示):

1)一轴对一轴(II)型,前轴制动器与后桥制动器各用一个回路。

2)交叉型(X),前轴的一侧车轮制动器与后桥的对策车轮制动器同属一个回路。 3)一周半对半轴(HI)型,两侧前制动器的板书轮缸和全部后制动器轮缸属于一个回路,其余的前轮缸则属另一回路。

4)半轴一轮对半轴一轮(LL)型,两个回路分别对两侧前轮制动器的半数轮缸和一个后轮制动器起作用。

5)双半轴对双半轴(HH)型,每个回路均只对每个前、后制动器的半数轮缸起作用。 II型管路布置较为简单,可与传统的但轮岗鼓式制动器配合使用,成本较低,目前在各类汽车特别是商用车商用得最广泛。对于这种形式,若后制动回路失效,则一旦前轮抱死即极易丧失转弯制动能力。对于采用前轮驱动因而前制动器强于后制动器的乘用车,当前制动回路失效而单用后桥制动时,制动力将严重不足(小于正常情况下的一半),并且,若后桥负荷小于前轴负荷,则踏板力过大时易使后桥车轮抱死而汽车侧滑。

X型的结构也很简单。直行制动时任一回路失效,剩余的总制动力都能保持正常值的50%。但是,一旦某一管路损坏造成制动力不对称,此时前轮将朝制动力大的一边绕主销转动,使汽车丧失稳定性。因此,这种方案适用于主销偏移距为负值(达20mm)的汽车上。这时,不平衡的制动力使车轮反向转动,改善了汽车的稳定性。

HI、HH、LL型结构都比较复杂。LL型和HH型在任一回路失效时,前后制动力比值均与

10

中国农业大学学士论文 第2章 制动系统方案论证分析与选择 正常情况下相同,剩余总制动力可达正常值的50%左右。HI型单用一轴半回路时剩余制动力较大,但此时与LL型一样,紧急制动情况下后轮很容易先抱死。

综合以上各个管路的优缺点,最终选择X型管路。

2.4 液压制动主缸的设计方案

为了提高汽车行驶的安全性,并根据交通法则的要求,现代汽车的行驶制动系统都采用了

双回路制动系统。双回路制动系统的制动主缸为串联双缸制动主缸,单缸制动主缸已经被淘汰。 储存罐中的油经每一腔的进油螺栓和各自旁通孔、补偿孔流入主缸的前、后腔。在主缸前、后工作腔内产生的油压分别经各自的出油阀和各自的管路传到前、后轮制动器的轮缸。 主缸不工作时,前、后俩工作腔内的活塞头部与皮碗正好位于前、后腔内各自的旁通孔和补偿孔之间。

当踏下制动踏板时,踏板传动机构通过推杆推动后缸活塞前移,到皮碗掩盖住旁通孔后,此腔液压升高。在后腔液压和后腔弹簧力的作用下,推动前缸活塞向前移动,前腔压力也随之升高。当继续下踩制动踏板时,前、后腔的液压继续升高,使前、后轮制动器制动。 撤除踏板力后,制动踏板机构、主缸前后腔活塞和轮缸活塞,在各自的复位弹簧作用下回位,管路中的制动液借其压力推开回油阀门流回主缸。于是接触制动。

当迅速放开制动踏板时,由于油液的粘性和管路阻力的影响,油液不能及时流回主缸并填充因活塞右移而让出的空间,因而在旁通孔开启之前,压油腔中产生一定的真空度。此时进油腔液压高于压油腔,因而进油腔的油液便从前、后缸活塞的前密封皮碗的边缘与缸壁间的间隙流入各自的压油腔以填补真空。与此同时,储液室中的油液经补偿孔流入各自的进油腔。活塞完全复位后,旁通孔已开放,由制动管路继续流回主缸而显多余的油液便可经前、后缸的旁通孔流回储液室。液压系统中因密封不良而产生的制动液漏泄,和因温度变化而引起的制动液膨胀或收缩,都可以通过补偿孔和旁通孔得到补偿。

若与前腔连接的制动管路损坏楼有时,则在踩下制动踏板时只后腔中能建立液压,前腔中无压力。此时在液压差作用下,前腔活塞迅速前移到前缸活塞前端顶到主缸体上。此后,后缸工作腔中液压方能升高到制动所需的值。

若与后腔连接的制动管路损坏漏油时,则在踩下制动踏板时,起先只是后缸活塞前移,而不能推动前缸活塞,因后缸工作腔中不能建立液压。但在后缸活塞直接顶触前缸活塞时,前缸活塞前移,使前缸工作腔建立必要的液压而制动。

由此可见,采用这种主缸的双回路液压制动系,当制动系统中任一回路失效时,串联双缸制动主缸的另一腔仍能够工作,只是所需踏板行程加大,导致汽车制动距离增长,制动力减小。大大的提高了工作的可靠性。

11

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库汽车制动系统毕业设计(3)在线全文阅读。

汽车制动系统毕业设计(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/630593.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: