卓轩教育
?b2?c2?a2a2b2?c22bc1cosA?????,又A?(0,?),?A?(0,].
32bc2bc4bc4bc2
19.(1)证明:取AB中点M,连MF,ME,
E为CC1中点,F为AB中点,
?MF//B1B,MF?EC//B1B,EC?1B1B, 21B1B, 2MF//EC,且MF?EC,
MFCE为平行四边形,CF//EM, CF?平面AB1E,EM?平面AB1E, ?CF//平面AB1E.
(2)解:
AA1?底面ABC,?侧面AC1?底面ABC,
0又?ACB?90,BC垂直于交线AC,?BC?侧面AC1.
AC?BC?1,AA1?2,S?ACE?VO?AB1E?VB1?ACE?VB?ACE
11?1?1?, 22111???1?. 3262220.(1)证明:当n?1时,4S1?4a1?a2?4?1?a2?4a1?5,
又an?0,?a2?24a1?5.
2(2)解:4Sn?an?1?4n?1,4Sn?1?an?4n?3,当n?2时,两式相减得
222224an?an?1?an?4,an?1?an?4an?4?(an?2)
an?0,?an?1?an?2,an?1?an?2,?an?为等差数列,公差d?2.(n?2)
2a2,a5,a14成等比数列,?a5?a2?a14,(a2?3d)2?a2?(a2?12d)
?a2?3,?an?a2?(n?2)d?2n?1.
6
卓轩教育
a2?3代入(1)解得a1?1,也满足通项公式an?2n?1.
(3)证明:
11111??(?) anan?1(2n?1)(2n?1)22n?12n?111??a1a2a2a3?
?1111111?(?)?(?)?anan?1213235111?(?) 22n?12n?1111(1?)?. 22n?12c212221.解:(1)e?2??a?2c,设P(m,n),又F1(?c,0),F2(c,0),
a22m2?n2?73222,(?c?m,?n)?(c?m,?n)?m?c?n?, 44723?c??c2?1,从而a2?2,b2?1. 44x2?y2?1. 椭圆C的方程为2(2)设lAB:y?kx?141622?0,??0成立. 代入椭圆整理得(2k?1)x?kx?339记A(x1,y1),B(x2,y2),则x1?x2?设存在定点M(0,m),MA?MB?0
4k16xx??,, 123(2k2?1)9(2k2?1)(x1,y1?m)?(x2,y2?m)?x1x2?(y1?m)(y2?m)?0
11x1x2?(kx1?m?)(kx2?m?)?0,33
11(k2?1)x1x2?k(m?)(x1?x2)?(m?)2?033
(k2?1)??1614k12?k?(m?)?(m?)?0 229(2k?1)33(2k?1)3
121?16(k2?1)?12k2(m?)?9(2k2?1)(m2?m?)?0,
3397
卓轩教育
18k2(m2?1)?(9m2?6m?15)?0,
?m2?1?0?m?1. 存在定点M(01)满足要求. ?2?9m?6m?15?0
22.解:(1)
a?1,f(x)?x2?ex,f?(x)?2x?ex.
令g(x)?2x?ex,g?(x)?2?ex?0,x?ln2.
在(??,ln2)上,g(x)单调递增,在(ln2,??)上,g(x)单调递减, 最大值g(ln2)?2ln2?2?2(ln2?1)?2ln2?0. e?f?(x)?0,f(x)在(??.??)上单调递减.
(2) ①f?(x)?2ax?ex,须方程2ax?e?0有相异两实根. 化为2ax?e,如图,设切点为A(x0,e0),
xx
x(ex)??ex,?2a?ex0,又2ax0?ex0, 2ax0?2a?x0?1,ex0?e,A(1,e),
e2a?kAO?e,a?.
2解法二.
f?(x)?2ax?ex,须方程2ax?ex?0有相异两实根.
exexex?x?ex?1ex(x?1)?化为2a?,令?(x)?,??(x)? 22xxxx由??(x)?0得x?1,
在(??,0),(0,1)上,??(x)?0,?(x)单调递减; 在(1,??)上,??(x)?0,?(x)单调递增,
8
卓轩教育
当x?(??,0)时,方程2ax?e?0不可能有相异两实根. 最小值?(1)?e, 从而2a?e?a?②由①知,当a?xe. 且0?x1?1?x2. 2e时,两个极值点x1,x2(x1?x2) 2必有0?x1?1?x2,
ex1f?(x1)?0,?2ax1?e?0,a?,x1?(0,1),
2x1x1xex12x1f(x1)?ax?e??x1?e?ex1(1?1),x1?(0,1),
2x1221x1令h(t)?e(?1),t?(0,1),
tt2t1t1h?(t)?et(?1)?et??et(?)?0,
2222h(t)在(0,1)上单调递减,h(1)?h(t)?h(0)??即?
et?et(?1)??1, 22e?f(x1)??1. 证毕. 2 9
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库数学(文科)2014届泉州五中高三5月份模拟试卷含答案(2)在线全文阅读。
相关推荐: