Fluent经典问题答疑
1.在gambit中对一体积成功的进行了体网格,网格进行了examine mesh,也没有什么问题,可当要进行边界类型(boundary type)的设定时,却发现type 只有node, element_side两项,没有什么wall,pressure_outlet等。为何无法定义边界? 答:因为没有选择求解器为fluent 5/6
2.在FLUENT模拟以后用display下的操作都无法显示,不过刚开始用的是好的,然后就不行了,为什么?
答:DirectX 控制面板中的“加速”功能禁用即可
3.把带网格的几个volume,copy到另一处,但原来split的界面,现在都变成了wall,怎么才能把wall变成内部流体呢?
答: 直接边界面定义为interior即可
第3题:在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?
注:我将原题目的提问顺序进行了修改调整,这样更利于回答。
4.FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处? 在Gambit目录中,有三个文件,分别是default_id.dbs,jou,trn文件,对Gambit运行save,将会在工作目录下保存这三个文件:default_id.dbs,default_id.jou,default_id.trn。 jou文件是gambit命令记录文件,可以通过运行jou文件来批处理gambit命令; dbs文件是gambit默认的储存几何体和网格数据的文件; trn文件是记录gambit命令显示窗(transcript)信息的文件;
msh文件可以在gambit划分网格和设置好边界条件之后export中选择msh文件输出格式,该文件可以被fluent求解器读取。
Case文件包括网格,边界条件,解的参数,用户界面和图形环境。 Data文件包含每个网格单元的流动值以及收敛的历史纪录(残差值)。Fluent自动保存文件类型,默认为date和case文件
Profile文件边界轮廓用于指定求解域的边界区域的流动条件。例如,它们可以用于指定入口平面的速度场。
读入轮廓文件,点击菜单File/Read/Profile...弹出选择文件对话框,你就可以读入边界轮廓文件了。
写入轮廓文件,你也可以在指定边界或者表面的条件上创建轮廓文件。例如:你可以在一个算例的出口条件中创建一个轮廓文件,然后在其它算例中读入该轮廓文件,并使用出口轮廓作为新算例的入口轮廓。要写一个轮廓文件,你需要使用Write Profile面板(Figure 1),菜单:File/Write/Profile...
是关于Tecplot软件使用的;在这里给Tecplot新手推荐一个学习的方法: 如果你对Tecplot一点都不熟悉的话,别紧张,没关系的,你可以直接看Tecplot的动画Demo很快就能入门。
Demo网页:在“开始”->\所有程序“->\
打开网页,里面有Tecplot使用的大部分功能的动画教程,花上一二十分钟,就能对Tecplot有所了解,并可以作初步的使用了。 这八道问题的答案基本都在里面了。 以下是Demo的内容:
Let's take care of the warning \viscosity limited to viscosity ratio****\which is not physical. This problem is mainly due to one of the following:
1)Poor mesh quality(i.e.,skewness > 0.85 for Quad/Hex, or skewness > 0.9 for Tri/Tetra elements). {what values do you have?}
2)Use of improper turbulent boudary conditions.
3)Not supplying good initial values for turbulent quantities.
出现这个警告,一般来讲,最可能的就是网格质量的问题,尤其是Y+值的问题;在划分网格的时候要注意,第一层网格高度非常重要,可以使用NASA的Viscous Grid Space Calculator来计算第一层网格高度;如果这方面已经注意了,那就可能是边界条件中有关湍流量的设置问题,关于这个,本版中已经有专门的帖子进行了讨论,Fluent培训的教程中也有讲到,请大家参考。
回答问题:4 常见离散格式的性能的对比(稳定性、精度和经济性)。 请参考王福军的书《计算流体动力学分析—CFD理论与应用》
离散格式 中心差分 一阶迎风 稳定性及稳定条件 精度与经济性 条件稳定Peclet小于等于2 在不发生振荡的参数范围内, 绝对稳定 可以获得校准确的结果。 虽然可以获得物理上可接受的解,但当Peclet数较大时,假扩散较严重。为避免此问题,常需要加密计算网格。 二阶迎风 绝对稳定 精度较一阶迎风高,但仍有假扩散问题。 混合格式 绝对稳定 当Peclet小于等于2时,性能与中心差分格式相同。当Peclet大于2时,性能与一阶迎风格式相同。 指数格式、乘方格式 绝对稳定 主要适用于无源项的对流扩散问题,对有非常数源项的场合,当Peclet数较高时有较大误差。 QUICK格式 条件稳定Peclet小于等于8/3 可以减少假扩散误差,精度较高,应用较广泛,但主要用于六面体和四边形网格。 改进的QUICK格式 绝对稳定 性能同标准QUICK格式,只是不存在稳定性问题。
5.在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?
具体参考王福军的书《计算流体动力学—CFD软件原理与应用》的第52-54页,这里只作简短介绍。
在利用有限体积法建立离散方程时,必须遵守如下四条基本原则: 1.控制体积界面上的连续性原则; 2.正系数原则;
3.源项的负斜率线性化原则;
4.主系数等于相邻节点系数之和原则。 有限体积法的四条基本原则.pdf
6 .流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?
答:这个问题的范畴好大啊。简要的说一下个人的理解吧:流场数值求解的目的就是为了得到某个流动状态下的相关参数,这样可以节省实验经费,节约实验时间,并且可以模拟一些不可能做实验的流动状态。主要方法有有限差分,有限元和有限体积法,好像最近还有无网格法和波尔兹曼法(格子法)。基本思路都是将复杂的非线性差分/积分方程简化成简单的代数方程。相对来说,有限差分法对网格的要求较高,而其他的方法就要灵活的多
7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?
注:这个问题不是一句两句话就能说清楚的,大家还是看下面的两篇小文章吧,摘自《计算流体力学应用》,读完之后自有体会。
8 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 边界条件与初始条件是控制方程有确定解的前提。
边界条件是在求解区域的边界上所求解的变量或其导数随时间和地点的变化规律。对于任何问题,都需要给定边界条件。
初始条件是所研究对象在过程开始时刻各个求解变量的空间分布情况,对于瞬态问题,必须给定初始条件,稳态问题,则不用给定。对于边界条件与初始条件的处理,直接影响计算结果的精度。
在瞬态问题中,给定初始条件时要注意的是:要针对所有计算变量,给定整个计算域内各单元的初始条件;初始条件一定是物理上合理的,要靠经验或实测结果。
10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? PS:这个问题想来应该是比较基础的问题,既然没人回答,我就插几句吧;嘿嘿。
我们知道很多描述物理问题的控制方程最终就可以归结为偏微分方程,描述流动的控制
方程也不例外。
从数学角度,一般将偏微分方程分为椭圆型(影响域是椭圆的,与时间无关,且是空间内的闭区域,故又称为边值问题),双曲型(步进问题,但依赖域仅在两条特征区域之间),抛物型(影响域以特征线为分界线,与主流方向垂直;具体来说,解的分布与瞬时以前的情况和边界条件相关,下游的变化仅与上游的变化相关;也称为初边值问题); 从物理角度,一般将方程分为平衡问题(或稳态问题),时间步进问题。 两种角度,有这样的关系:椭圆型方程描述的一般是平衡问题(或稳态问题),双曲型和抛物型方程描述的一般是步进问题。
至于具体的分类方法,大家可以参考一般的偏微分方程专著,里面都有介绍。关于各种不同近似水平的流体控制方程的分类,大家可以参考张涵信院士编写《计算流体力学—差分方法的原理与应用》里面讲的相当详细。
三种类型偏微分方程的基本差别如下:
1)三种类型偏微分方程解的适定性(即解存在且唯一,并且解稳定)要求对定解条件有不同的提法;
2)三种类型偏微分方程解的光滑性不同,对定解条件的光滑性要求也不同; 椭圆型和抛物型方程的解是充分光滑的,因此对定解条件的光滑性要求不高。而双曲型方程允许有所谓的弱解存在(如流场中的激波),即解的一阶导数可以不连续,所以对定解条件的光滑性要求很高,这也正是采用有限元法求解双曲型方程困难较多的原因之一。 3)三种类型偏微分方程的影响区域和依赖区域不一样。 在双曲型和抛物型方程所控制的流场中,某一点的影响区域是有界的,可采用步进求解。如对双曲型方程求解时,为了与影响区域的特征一致,采用上风格式比较适宜。而椭圆型方程的影响范围遍及全场,必须全场求解,所采用的差分格式也要采用相应的中心格式。 以上只是一些较为肤浅的概念,如想深入,可参考相关的偏微分方程及数值计算等书籍。
可压缩Euler及Navier-Stokes方程数值解
描述无粘流动的基本方程组是Euler方程组,描述粘性流动的基本方程组是Navier-Stokes方程组。用数值方法通过求解Euler方程和Navier-Stokes方程模拟流场是计算流体动力学的重要内容之一。由于飞行器设计实际问题中的绝大多数流态都具有较高的雷诺数,这些流动粘性区域很小,由对流作用主控,因此针对Euler方程发展的计算方法,在大多数情况下对Navier-Stokes方程也是有效的,只需针对粘性项用中心差分离散。
用数值方法求解无粘Euler方程组的历史可追溯到20世纪50年代,具有代表性的方法是1952年Courant等人以及1954年Lax和Friedrichs提出的一阶方法。从那时开始,人们发展了大量的差分格式。Lax和Wendroff的开创性工作是非定常Euler(可压缩Navier-Stokes)方程组数值求解方法发展的里程碑。二阶精度Lax-Wendroff格式应用于非线性方程组派生出了一类格式,其共同特点是格式空间对称,即在空间上对一维问题是三点中心格式,在时间上是显式格式,并且该类格式是从时间空间混合离散中导出的。该类格式中最流行的是MacCormack格式。
采用时空混合离散方法,其数值解趋近于定常时依赖于计算中采用的时间步长。尽管由时间步长项引起的误差与截断误差在数量级上相同,但这却体现了一个概念上的缺陷,因为在计算得到的定常解中引进了一个数值参数。将时间积分从空间离散中分离出来就避免了上述缺陷。常用的时空分别离散格式有中心型格式和迎风型格式。空间二阶精度的中心型格式(一维问题是三点格式)就属于上述范畴。该类格式最具代表性的是Beam-Warming隐式格式
和Jameson等人采用的Runge-Kutta时间积分方法发展的显式格式。迎风型差分格式共同特点是所建立起的特征传播特性与差分空间离散方向选择的关系是与无粘流动的物理特性一致的。第一个显式迎风差分格式是由Courant等人构造的,并推广为二阶精度和隐式时间积分方法。基于通量方向性离散的Steger-Warming和Van Leer矢通量分裂方法可以认为是这类格式的一种。该类格式的第二个分支是Godunov方法,该方法在每个网格步求解描述相邻间断(Riemann问题)的当地一维Euler方程。根据这一方法Engquist、Osher和Roe等人构造了一系列引入近似Riemann算子的格式,这就是著名的通量差分方法。
对于没有大梯度的定常光滑流动,所有求解Euler方程格式的计算结果都是令人满意的,但当出现诸如激波这样的间断时,其表现确有很大差异。绝大多数最初发展起来的格式,如Lax-Wendroff格式中心型格式,在激波附近会产生波动。人们通过引入人工粘性构造了各种方法来控制和限制这些波动。在一个时期里,这类格式在复杂流场计算中得到了应用。然而,由于格式中含有自由参数,对不同问题要进行调整,不仅给使用上带来了诸多不便,而且格式对激波分辨率受到影响,因而其在复杂流动计算中的应用受到了一定限制。 另外一种方法是力图阻止数值波动的产生,而不是在其产生后再进行抑制。这种方法是建立在非线性限制器的概念上,这一概念最初由Boris和Book及Van Leer提出,并且通过Harten发展的总变差减小(TVD, Total Variation Diminishing)的重要概念得以实现。通过这一途径,数值解的变化以非线性的方式得以控制。这一类格式的研究和应用,在20世纪80年代形成了一股发展浪潮。1988年,张涵信和庄逢甘利用热力学熵增原理,通过对差分格式修正方程式的分析,构造了满足熵增条件能够捕捉激波的无波动、无自由参数的耗散格式(NND格式)。该类格式在航空航天飞行器气动数值模拟方面得到了广泛应用。
1987年,Harten和Osher指出,TVD格式最多能达到二阶精度。为了突破这一精度上的限制引入了实质上无波动(ENO)格式的概念。该类格式“几乎是TVD”的,Harten因此推断这些格式产生的数值解是一致有界的。继Harten和Osher之后,Shu和Osher将ENO格式从一维推广到多维。J.Y.Yang在三阶精度ENO差分格式上也做了不少工作。1992年,张涵信另辟蹊径,在NND格式的基础上,发展了一种能捕捉激波的实质上无波动、无自由参数的三阶精度差分格式(简称ENN格式)。1994年,Liu、Osher和Chan发展了WENO(Weighted Essentially Non-Oscillatory)格式。WENO格式是基于ENO格式构造的高阶混合格式,它在保持了ENO格式优点的同时,计算流场中虚假波动明显减少。此后,Jiang提出了一种新的网格模板光滑程度的度量方法。目前高阶精度格式的研究与应用是计算流体力学的热点问题之一。
不可压缩Navier-Stokes方程求解
不可压缩流体力学数值解法有非常广泛的需求。从求解低速空气动力学问题,推进器内部流动,到水动力相关的液体流动以及生物流体力学等。满足这么广泛问题的研究,要求有与之相应的较好的物理问题的数学模型以及鲁棒的数值算法。
相对于可压缩流动,不可压缩流动的数值求解困难在于,不可压缩流体介质的密度保持常数,而状态方程不再成立,连续方程退化为速度的散度为零的方程。由此,在可压缩流动的计算中可用于求解密度和压力的连续方程在不可压缩流动求解中仅是动量方程的一个约束条件,由此求解不可压缩流动的压力称为一个困难。求解不可压缩流动的各种方法主要在于求解不同的压力过程。
目前,主要有两类求解不可压缩流体力学的方法,原始变量方法和非原始变量方法。求解不可压缩流动的原始变量方法是将Navier-Stokes方程写成压力和速度的形式,进行直接求解,这种形式已被广为应用。非原始变量方法主要有Fasel提出的流函数-涡函数法、Aziz
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库Fluent经典问题答疑在线全文阅读。
相关推荐: