原先只是在工业中才使用的自主式机器人也开始进入到人们的日常生活中来,因此在工业、医学、农业、建筑业甚至军事等领域都能看到移动机器人的身影,美国麻省理工学院、斯坦福大学、英国爱丁堡大学等都陆续成立了机器人实验室,由此机器人技术得到了长久的发展。
该课题正是在这种环境下提出的,本文设计的机器人实际上就是一种利用视觉传感器自动移动的机器装置,由视觉传感器实现路径识别,通过对小车速度的控制,使小车能按照任意给定的黑色引导线平稳地寻迹。
1.1.2 课题的现实意义
对智能机器人【2】的研究有着广泛的现实意义,概括地说可以有三点: 1. 智能机器人技术是一门综合性很强的技术。对移动机器人的设计包括机械结构、传感器、运动学方程、控制系统、路径规划以及各种算法的分析与设计。因此移动机器人的研究涉及到的学科包括:机械加工技术、传感器技术、信息处理技术、通信技术、自动控制技术、电子技术、机器视觉技术、图像处理技术、网络技术以及计算机技术等等,所以移动机器人技术的发展使得各门科学技术都得到了长远的进步与发展,是科学技术不断发展的有力途径和工具。
2. 智能机器人有着广泛的应用前景,可以说它几乎渗透到了人类社会所有的领域。可以预见在未来的人类社会里,移动机器人将会出现在我们生活中的每一个角落,成为时代发展的主流。随着人们生活水平的提高,人类对机器人的功能也提出了更高的要求,越来越多的移动机器人已经走入了我们的生活,在家里,服务型的室内机器人可以从事清洁卫生、园艺、垃圾处理、家庭护理与服务等作业;在医院,移动机器人可以从事手术、化验、助残、导盲、运输、康复及病人护理等作业;在商场和旅游中,导购机器人、导游机器人和表演机器人都使得人类生活变得丰富多彩。因此移动机器人已经成为未来社会非常有潜力的产业,谁可以掌握室内移动机器人的关键技术,谁就可以引领世界的潮流。
3. 机器人的发展是一个国家高科技水平和工业自动化程度的重要体现。它实现了工业的完全自动化,从机械加工到零件的装配,甚至连工艺的设计都由工业机器人完成。机器人带动了工业技术的革新,社会的发展以及其他领域的革命。当今社会,机器人正代替人发挥着日益重要的作用,不断地改变着人类的生活方式,因此完全可以说机器人技术的发展带动了整个人类社会的发展。
综上所述,我国对移动机器人的研究面临着很大的挑战,必须加大对机器人的开发与应用才能走在时代的前列。
1.2 智能机器人的发展
2
1.2.1智能机器人的定义
自机器人问世以来,人们就很难对机器人下一个准确的定义,欧美国家认为机器人应该是“由计算机控制的通过编程具有可以变更的多功能的自动机械;”日本学者认为“机器人就是任何高级的自动机械;”我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器。”目前国际上对机器人的概念已经渐趋一致,联合国标准化组织采纳了美国机器人协会于1979年给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”概括说来,机器人是靠自身动力和控制能力来实现各种功能的一种机器。
1.2.2 国外机器人的发展
智能机器人的研究可以追溯到20世纪60年代【2】,在1966至1972年间,美国斯坦福研究院的和Charles等人研制的机器人,身高1.5米,是历史上第一个由计算机控制的自主式智能移动机器人。它由远程大型计算机控制,带有视觉传感器和触觉传感器,在室内的复杂环境中可以完成从一个地点移动到另一个地点,以及检测障碍物并移动障碍物到指定地点的任务。它的出现标志着智能机器人研究的正式开始。
1970年前苏联月球17号探测器把世界第一个无人驾驶的月球车送去月球,月球车行驶0.5公里,考察了8万平方米的月面。后来的月球车行驶37公里,向地球发回88幅月面全景图。在同一时代,美国喷气推进实验室也研制了月球车(图1-2),应用于行星探测的研究。采用了摄像机,激光测距仪以及触觉传感器。机器人能够把环境区分为可通行、不可通行以及未知等类型区域。
3
图1-2 月球车
1973年到1979年,斯坦福大学人工智能实验室研制了CART移动机器人,CART可以自主地在办公室环境运行。CART每移动1米,就停下来通过摄像机的图片对环境进行分析,规划下一步的运行路径。由于当时计算机性能的限制,CART每一次规划都需要耗时约15分钟。CMU Rover由卡耐基梅隆大学机器人学研究所在1981年开始研制,它具有12个微处理器来处理实时任务,一个大型的远程计算机通过遥控方式来进行复杂规划与环境分析,并通过声纳传感器与视觉传感器来探测环境中的障碍。
由于计算机的运行速度、传感器感知能力的限制,这些移动机器人的实时控制性能不佳。每自主前进一步都需要停下来花费大量的时间进行计算,因此在实际应用中通常采取遥控的方式。进入20世纪90年代,随着计算机技术的飞速发展,机器人的感知、决策能力也获得了长足的进步。到了1994年,卡耐基梅隆大学机器人学研究所开发了Dante II,这是一个8足的移动机器人。在1994年4月,该机器人通过卫星通讯与Internet相连,通过网络由NASA的研究组、卡耐基梅隆大学以及阿拉斯加火山观测所的科研人员控制Dante进行阿拉斯加火山口观测,并收集了火山口喷出的气体样本。
1.2.3 国内机器人的发展
国内有关移动机器人研究的起步较晚,“八五”期间研制了ATB-1,即军用
4
智能机器人平台【3】,由浙江大学、国防科技大学、清华大学、北京理工 大学、南京理工大学联合研制。“九五”期间又研制了军用“智能机器人平台2号”,道路自主驾驶的最高速度为74Km/h。
在国家“十五”863计划中,展开了一系列的有关智能机器人方面的研究。在危险环境下作业移动机器人、基于复合结构的非结构环境应用的移动机器人、高机动性越障机器人、多足仿生机器人、仿人形机器人等研究项目取得了众多的成果。国防科技大学、哈尔滨工业大学、清华大学、中国科技大学、中科院自动化研究所、沈阳自动化研究所等正在开展有关月球探测自主机器人的相关研究。在863专项支持下,清华大学开发了多功能室外智能移动机器人实验平台、上海交通大学研制了移动机构试验平台以及Frontier-ITM等。211A MCTB采用了关节轮式移动结构,具有较强的越障能力。Frontier-ITM自主移动机器人作为中国大学的参赛队首次参加了Robocop中型组比赛。CASIA-1是中科院自动化所研制的集多种传感器、视觉、语音识别与会话功能于一体的智能移动机器人。沈阳自动化所研制的自行输送小车已投入生产现场,此外还研制了“多功能排险防暴机器人”和“蛇形机器人”。
2003年国防科技大学贺汉根教授主持研制的无人驾驶车采用了四层递阶控制体系结构以及机器学习等智能控制算法,在高速公路上达到了130Km/h的稳定时速,最高时速170Km/h,而且具备了自主超车功能,这些技术指标均处于世界领先的地位。
这一系列的成就推动了我国移动机器人技术的发展,缩短了与国外先进水平的差距,而且在某些领域也取得了国际领先的成果,己经成为我国机器人应用的一个突出领域。
5
2设计任务以及方案的讨论
2.1设计任务概述
设计一个智能机器人,使该机器人能通过视觉传感器实现路径识别,并能对小车的速度进行控制,使小车能按照任意给定的黑色引导线平稳地寻迹。
图2-1
2.2 视觉移动机器人机械结构设计方案
智能车系统以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科;主要由路径识别、角度控制及车速控制等功能模块组成。一般而言,智能车系统要求小车在白色的场地上,通过控制小车的转向角和车速,使小车能自动地沿着一条任意给定的黑色带状引导线行驶。
2.2.1 动力源的论证与选择
方案1:步进电机【4】 方案2:直流电机 方案3:交流电机 优缺点比较:
方案1 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,
6
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库基于视觉移动机器人的设计与分析 - 图文(2)在线全文阅读。
相关推荐: