23.(本题满分8分)
解:(1)将(-1,0),(0,3)代入y??x2?bx?c得 ???1?b?c?0,?b?2,解得?·············1分
c?3.c?3.?? ∴b?2,c?3,y??x2?2x?3.·············4分
(2)?1?x?3.·············6分
(3)y??x2?2x?3??(x?1)2?4,·············7分
∵
1≤x≤2,∴当x=1时,y的最大值为4.············8分 224.(本题满分8分)
(1)证明:△=(m?6)2?4(3m?9)·············1分
=m?12m?36?12m?36=m2≥0·············3分 ∴该一元二次方程总有两个实数根.·············4分
(2)解:动点P(m,n)所形成的函数图象经过点A(4,5).·············5分
理由:
∵x1?x2?m?6,n?x1?x2?5,∴n?m?1.·············6分 ∵当m?4时,n?5,·············7分
∴动点P(m,n)所形成的函数图象经过点A(4,5).·············8分
25.(本题满分8分)
解:(1)连接OD.
∵OA为半径的圆弧与BC相切于点D,∴OD⊥BC.·············1分 ∴∠ODB=∠C=∠ODC=90°,∴OD∥AC,∴∠ODA=∠CAD,·············2分 又∵OA=OD,∴∠ODA=∠OAD. ∴∠CAD=∠OAD,·············3分
A ∴AD平分∠BAC.……………………4分 (2)过O作OH⊥AC于H,∴AH?21AE?1.·············5分 2O ∵OH⊥AC,∴∠OHC=90°, ∵∠ODC=90°,∠C=90°, ∴四边形ODCH为矩形,·············6分 ∴OH= DC=3.·············7分 ∴在Rt△AHO中,
圆弧的半径OA=AH?OH22H E B D C ?12?(3)2?4?2.………………8分
九年级期中数学试卷 第6页 共4页
26.(本题满分12分)
解:(1)z?(x?18)y?(x?18)(?2x?100)??2x2?136x?1800,
∴z与x之间的函数解析式为z??2x2?136x?1800;·····3分(不化简不扣分) (2)当z?440时,?2x2?136x?1800?440·············4分 解得x1?28,x2?40·············6分
因此,当销售单价为28或40元时,厂商每月获得的利润为440万元······7分 (3)由题意,得18(-2x+100)≤540·············8分
解得x≥35·············9分
配方得 z??2(x?34)2?512
∴当x≥34时,z随x的增大而减小·············10分 ∴当x=35时,z最大为510万元
当销售单价为35元时,厂商每月获得的利润最大,为510万元.············12分
27.(本题满分12分)
(1)证明:连接CD,过点D作DG⊥AC于点G,DH⊥BC于点H, ∴∠DGE=∠DHF=90°.·············1分
∵AC=BC,点D为AB中点,∴CD平分∠ACB,∴DG= DH.·············2分
A ∵∠ACB=120°,∠EDF=60°,
∴∠DEC+∠DFH=180°, ∵∠DEC+∠DEG=180°, ∴∠DFH=∠DEG,·············3分
∴△DGE≌△DHF,·············4分
D G E
∴DE=DF.·············5分
C H F
(2)①解:过点D作DG⊥AC于点G,DH⊥BC于点H, 图1 ∴∠DGE=∠DHF=∠DGA=∠DHC= 90°. ∵AC=BC,∴∠A=∠B,∴△ADG∽△BDH.·············7分 ∵
B
AD1DGAD1??.·=,∴············8分
AB3DHBD2A D G E C H F 图2
B ∵∠DGE=∠DHF,∠DFH=∠DEG, ∴△DGE∽△DHF,·············9分
DEDG1??.·∴············10分 DFDH2DE1?.· ②············12分 DF2九年级期中数学试卷 第7页 共4页
28.(本题满分14分)解:(1)(1)作BD⊥x轴,垂足为点D,则 ∠BDC=∠ACB=∠AOC=90°, y ∴∠DCB+∠DBC=90°,∠DCB+∠ACO=90°, ∴∠DBC=∠ACO.·············2分 ∴△BDC∽△COA.·············3分 ∴B B1 BDDCBC············4分 ???3.·COAOACQ A D C O P (第28题) ∵A(0,1),C(-2,0), ∴OA=1,OC=2,·············5分 ∴BD=6,DC=3, A1 C1 x ∴点B的坐标(-5,6); ·············6分 (2)由平移,设A1(m,1),B1(n,6), 由平移,得m-n=5,············7分 由A1,B1恰好落在反比例函数y? ∴m=6,n = 1,∴y?k的图像上,得m= 6n,············8分 x6,C1(4,0); ···········10分 x6
为点Q , x
BCCQ?3,则需1?3, ACPC1(3)存在,要使△PQ C1∽△ABC,则需∠P C1Q=∠ACB=90°,·············11分 故作C1Q⊥x轴,交y?
要使△PQ C1∽△ABC,由已知331),∴Q C1=,P C1=.·············12分 22279 ∴点P的坐标(,0),(,0).·············14分
22 由C1(4,0),得Q(4,
九年级期中数学试卷 第8页 共4页
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库江苏省南通海门市2014年中考一模(期中)数学试卷(2)在线全文阅读。
相关推荐: