77范文网 - 专业文章范例文档资料分享平台

计算机研究生《计算理论》复习题

来源:网络收集 时间:2018-12-10 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

1、请你从形式定义、计算过程和对应的语言特点关系等诸方面综合比较DFA、PDA和图灵机 2、对于简单文法(正则语言、上下文无关语言),能够根据其产生式写出其语言 3、正则语言泵引理和上下文无关语言泵引理的理解、相互比较和应用

4、最简DFA、最简PDA的概念;DFA和PDA的简化过程;(带ε和不带ε的)NFA化简成最简DFA的过程

5、图灵机的Golder编码和通用图灵机的编码 6、上下文无关文法的乔姆斯基范式 7、DFA的计算过程

8、上下文无关文法的推导过程以及其歧义相关概念及分析 9、关于四类乔姆斯基语言及其对应的自动机类型特点分析 10、四类乔姆斯基语言的各种运算类型并形式化表示 11、关于CFG和DFA的若干判定问题

12、关于若干渐进符号:同阶渐进符号Θ、大O、小O和大Ω符号的含义和用法

13、请从NP类问题、P类问题、确定型单带TM、确定型多带TM、非确定型TM等角度综述

时间复杂性规律 相关例题:

1、请你综合比较DFA、PDA和图灵机 2、请写出下列表达式生成的正则语言

1)设有文法G=(V,T,P,S),其中V={S,A,B},T={a,b},P:S→aB;S→bA;A→bAA;A→a;A→aS;B→b;B→bS;B→aBB 请写出L(G)=

2)设一个有穷自动机M=(Q,?,?,q0,F),其中Q={q0,q1,q2,q3), ?={0,1}, F={q0},?如下:

?(q0,0)=q2, ?(q0,1)=q1, ?(q1,0)=q3, ?(q1,1)=q0 ?(q2,0)=q0, ?(q2,1)=q3, ?(q3,0)=q1, ?(q3,1)=q2 请写出L(M)=

3)设有文法G=({S,A},{a,b,c,d};R,S),其中R:S?aSd|aAd, A→bAc|bc 请写出L(G)= 3、用泵引理证明下列论点

1)A1={abc|n≥0}不是正则语言

2)D={ww|w∈{0,1}}不是上下文无关语言 4、把下面状态转换图代表的DFA变化成最简DFA

*

nnn

5、设有图灵机M=({q1,q2,q3},{0,1},{0,1,B},?,q1,B,{q2}),其中转移函数?为?(q1,1)=

(q3,0,R);?(q3,0)=(q1,1,R);?(q3,1)= (q2,0,R);?(q3,B)=(q3,1,L),试写出其标准编码

6、将文法G转换成乔姆斯基范式,其中G=({S,A},{a,b,c},R,S),R:S→aS|A, A→bA|c 7、试描述将一台带ε的NFA转换成等价的DFA的过程

8、请你从形式定义、计算过程和对应的语言特点关系等诸方面综合比较DFA、PDA和图灵机 9、对于上下文无关文法G=(V,T,P,S),其中V={S,A,B},T={a,b},P:S→aB|bA;A→a|aS|bAA;

B→b|bS|aBB,则 1)请写出L(G)=

2)给出终极符串x=aaabbabbba的最左推导、最右推导和推导树 3)这个文法是否有歧义,如果有歧义,能否给出等价的非歧义文法

10、设有图灵机M=({q1,q2,q3},{0,1},{0,1,B},?,q1,B,{q2}),其中转移函数?为

?(q1,1)=(q3,0,R);?(q3,0)=(q1,1,R);?(q3,1)=(q2,0,R);?(q3,B)=(q3,1,L),试写出其标准编码

11、将文法G=({S,A,B},{a,b},R,S),R:S→bA|aB,A→bAA|aS|a,B→aBB|bS|b转换成乔

姆斯基范式

12、用泵引理证明下列论点

1)A={a2|n≥0}不是正则语言

2)B={ab,aabb,…,ab,…}={ab|k≥1}不是正则语言 3)C={abcd|i,j≥1}不是上下文无关语言

13、请列出你所知道的有关四类乔姆斯基语言的运算类型并形式化表示之 14、请写出下列表达式生成的正则语言

1)设一个有穷自动机M=(Q,?,?,q0,F),其中Q={q0,q1,q2,q3), ?={0,1}, F={q0},?如下:?(q0,0)=q2, ?(q0,1)=q1, ?(q1,0)=q3, ?(q1,1)=q0, ?(q2,0)=q0, ?(q2,1)=q3, ?(q3,0)=q1, ?(q3,1)=q2。请写出L(M)=

2)设有文法G=({S,A},{a,b,c,d};R,S),其中R:S?aSd|aAd, A→bAc|bc。请写出L(G)= 15、关于泵引理

ijij

kk

kk

n1)请从内容描述和实质蕴涵两个角度描述并比较有关正则语言和上下文无关语言的两个泵引理

2)证明语言L={abcd|i,j>0}不是上下文无关语言

16、设有图灵机M=({q1,q2,q3},{0,1},{0,1,B},?,q1,B,{q2}),其中转移函数?为

?(q1,1)=(q3,0,R);?(q3,0)=(q1,1,R);?(q3,1)=(q2,0,R);?(q3,B)= (q3,1,L),试写出其标准编码 17、关于判定问题

1)下面是CFG派生问题ACFG={?G,ω?|G是CFG,ω是串,G派生ω}图灵机高层描述,请用类C语言写出其算法

2)设有一个上下文无关文法G,它的产生式集为S→AB|BC;A→BA|a;B→CC|b;C→AB|c,和一个终极符串x=baaba,用你给出的算法判定是否x∈L(G) 18、关于同阶渐进符号用法Θ

1)f(n)和g(n)是两通常数论函数,请给出其同阶渐进的定义。 2)请用精确的数学语言证明5n+8n+1=Θ(n) 对每一类语言可以提出的判定问题

空集问题:对任意给定的一个语言L的表示,判定L是否为空集 全集问题:对任意给定的字母表Σ上的一个语言L的表示,判定L=Σ* 有限和无限问题:对任意给定的一个语言L的表示,判定L是有限集或无限集

成员问题:对任意给定的字母表Σ上的一个语言L和任意一个串x∈Σ*,判定是否有x∈L 相等性问题:对任意给定的两个语言L1和L2,判定是否有L1=L2 子集问题:对任意给定的两个语言L1和L2,判定是否有L1?L2

2

2

ijij

CFG派生串问题的CYK算法

例题:设有一个上下文无关文法G,它的产生式集为S→AB|BC;A→BA|a;B→CC|b;C→AB|c,

和一个终极符串x=baaba,要用CYK算法判定是否x∈L(G)

由算法的第一步,V11={E|E→b}={B},V21={E|E→a}={A,C},V21=V51={A,C}, V21=V51={B} 由算法的第二步,可以求Vi2,i=1,…,5-2+1,例如V12={E|E→FH,F∈V11,H∈V21}={E|E

→BA,或E→BC}={S,A}

其他依次类推,V15={S,A,C},由于S∈V15,则X∈L(G)

乔姆斯基语言体系:

正规语言是确定上下文无关语言的真子类 确定上下文无关语言类是上下文无关语言的真子类 上下文无关语言类是上下文有关语言类的真子类 上下文有关语言类是递归语言的真子类 递归语言类是递归可枚举语言的真子类

对于语言,可以定义多种运算

语言集合所定义的各种运算:并,补,交,差等

语言字符串所定义的各种运算:求逆、求前缀、求后缀、连接等 语言字母表与语言字母表之间的映射:替换、同态、逆同态等

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库计算机研究生《计算理论》复习题在线全文阅读。

计算机研究生《计算理论》复习题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/355939.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: