A.20 C.183
B.61 D.548
[思路分析]读懂程序框图,按程序框图依次执行即可. 解析:初始值n,x的值分别为4,3,程序运行过程如下: v=1,i=3≥0,v=1×3+3=6,i=2≥0; v=6×3+2=20,i=1≥0; v=20×3+1=61,i=0≥0;
v=61×3+0=183,i=-1<0,结束循环,此时输出v的值为183.故选C. 答案:C
[体会领悟] 秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的求值问题的算法.其大大简化了计算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.本题程序框图的算法思路源于《数书九章》中多项式求值的“秦九韶算法”.
[例9] 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为________.(参考数据:sin15°≈0.258 8,sin 7.5°≈0.130 5)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2018年高中数学高考考前集训:数学传统文化的创新应用问题(解析(2)在线全文阅读。
相关推荐: