1.已知某一时期内某商品的需求函数为Q=50-5P,供给函数为Q=-10+5p。 求均衡价格Pe和均衡数量Qe ,并作出几何图形。
假定供给函数不变,由于消费者收入水平提高,使需求函数变为Q=60-5P。求出相应的均衡价格Pe和均衡
数量Qe,并作出几何图形。
假定需求函数不变,由于生产技术水平提高,使供给函数变为Q=-5+5p。求出相应的均衡价格Pe和均衡数
s
d
ds
量Qe,并作出几何图形。
利用(1)(2)(3),说明静态分析和比较静态分析的联系和区别。
利用(1)(2)(3),说明需求变动和供给变动对均衡价格和均衡数量的影响.
dsds解答:(1)将需求函数Q = 50-5P和供给函数Q =-10+5P代入均衡条件Q = QQd 50- 5P= -10+5P 得: Pe=6
以均衡价格Pe =6代入需求函数 Qd=50-5p ,得:
Qe=50-5?6?20
s或者,以均衡价格 Pe =6 代入供给函数 Q =-10+5P ,得:
Qe=-10+5?6?20
所以,均衡价格和均衡数量分别为Pe =6 , Qe=20 ...如图1-1所示. (2) 将由于消费者收入提高而产生的需求函
数Qd=60-5p和原供给函数Qs=-10+5P, 代入均衡条件Qd=Qs ,有:
60-5P=-10=5P 得Pe?7
Pe?7d
以均衡价格 代入
Q=60-5p ,得
Qe=60-5?7?25
,以均衡价格Pe?7代入Qs或者=-10+5P, 得
Qe=-10+5?7?25
所以,
均
衡
价
格
和
均
衡
数
量
分
别
为
Pe?7(3) 将原需求函数Qd
=50-5p 和由于技术水平提高而产生的 供给函数Qs
=-5+5p ,代入均衡条件Qds=Q,有:
50-5P=-5+5P 得
Pe?5.5
:
Qs
Qd
-
,
Qe?25
Pe,有
d
P?5.5Qe 以均衡价格代入=50-5p ,得
Qe?50?5?5.5?22.5
sP?5.5Qe或者,以均衡价格代入=-5+5P ,得
Qe??5?5?5.5?22.5
所以,均衡价格和均衡数量分别为
Pe?5.5,Qe?22.5.如图1-3所示.
(4)所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互作用下所实现的均衡状态及其特征.
也可以说,静态分析是在一个经济模型中根据所给的外生变量来求内生变量的一种分析方法.以(1)为例,在图1-1中,均衡点E就是一个体现了静态分析特征的点.它是在给定的供求力量的相互作用下
sQ所达到的一个均衡点.在此,给定的供求力量分别用给定的供给函数 =-10+5P
和需求函数
Qd=50-5p表示,均衡点E具有的特征是:均衡价格Pe?6且当Pe?6时,有Qd=Qs=Qe?20;
dsP?P?Pe.也可以这样来理解静态分析:在Qe?20Qe?20同时,均衡数量 ,切当时,有
外生变量包括需求函数的参数(50,-5)以及供给函数中的参数(-10,5)给定的条件下,求出的内生变量分别为
Pe?6,Qe?20 依此类推,以上所描素的关于静态分析的基本要点,在(2)
Ei?1,2?都得到了体现.
及其图1-2和(3)及其图1-3中的每一个单独的均衡点
而所谓的比较静态分析是考察当所有的条件发生变化时,原有的均衡状态会发生什么变化,并分析比较新
旧均衡状态.也可以说,比较静态分析是考察在一个经济模型中外生变量变化时对内生变量的影响,并分析比较由不同数值的外生变量所决定的内生变量的不同数值,以(2)为例加以说明.在图1-2中,由均衡点 变动到均衡点 ,就是一种比较静态分析.它表示当需求增加即需求函数发生变化时对均衡点的影响.很清楚,比较新.旧两个均衡点 和 可以看到:由于需求增加由20增加为25.也可以这样理解比较静态分析:在供给函数保持不变的前提下,由于需求函数中的外生变量发生变化,即其中一个参数值由50增加为60,从而使得内生变量的数值发生变化,其结果为,均衡价格由原来的6上升为7,同时,均衡数量由原来的20增加为25.
类似的,利用(3)及其图1-3也可以说明比较静态分析方法的基本要求.
(5)由(1)和(2)可见,当消费者收入水平提高导致需求增加,即表现为需求曲线右移时,均衡价格提高了,
均衡数量增加了.
由(1)和(3)可见,当技术水平提高导致供给增加,即表现为供给曲线右移时,均衡价格下降了,均衡数量增
加了.
总之,一般地有,需求与均衡价格成同方向变动,与均衡数量成同方向变动;供给与均衡价格成反方向变动,
与均衡数量同方向变动.
2.假定表2—5是需求函数Qd=500-100P在一定价格范围内的需求表: 某商品的需求表
价格(元) 1 2 3 4 5 需求量 400 300 200 100 0 (1)求出价格2元和4元之间的需求的价格弧弹性。 (2)根据给出的需求函数,求P=2是的需求的价格点弹性。
(3)根据该需求函数或需求表作出相应的几何图形,利用几何方法求出P=2时的需求的价格点弹性。它与
(2)的结果相同吗?
P1?P2?Q2ed????PQ1?Q22解(1)根据中点公式
2?42002ed???1.52300?1002 ,有:
dQ?500?100?2?300,所以,有:
(2) 由于当P=2时,
ed??dQP22?????100???dPQ3003
ed?GB2??OG3
(3)根据图1-4在a点即,P=2时的需求的价格点弹性为:
ed?或者
FO2??AF3
显然,在此利用几何方法求出P=2时的需求的价格弹性系数和(2)中根据定义公式求出结果是相同的,
ed?都是
23 。
P Q d C B 2 3 假定下表是供给函数Qs=-2+2P 在一定价格范围内的供给表。 某商品的供给表 A 价格(元) 2 O 3 300 4 Q 5 6 供给量 2 4 6 8 10 求出价格3元和5元之间的供给的价格弧弹性。 根据给出的供给函数,求P=3时的供给的价格点弹性。
根据该供给函数或供给表作出相应的几何图形,利用几何方法求出P=3时的供给的价格点弹性。它与(2)
的结果相同吗?
P1?P23?5e?Qs??P?2Qe441?Q2s??224?8?3解(1) 根据中点公式
2,有:
2
Qs??2?2Es?dQd?PQ?2?3(2) 由于当P=3时,
,所以
4?1.5P
Es??AB?1.(3) 根据图1-5,在a点即P=3时的供给的价格点弹性为:OB5
P Q d
A 显然,在此利用几何方法求出的-3 C O B P=3时的供给的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都是Es=1.5 5 Q
4图1-6中有三条线性的需求曲线AB、AC、AD。 (1)比较a、b、c三点的需求的价格点弹性的大小。 (2)比较 a、f、e三点的需求的价格点弹性的大小。
解 (1) 根据求需求的价格点弹性的几何方法,可以很方便地推知:分别处于不同的线性需求曲线上的a、
b、e三点的需求的价格点弹性是相等的.其理由在于,在这三点上,都有: P A
Ed?FOAF
(2)根据求需求的价格点弹性的几何方法,同样可以很方便地推知:分别处于三条线性需求曲线上的
a.e.f三点的需求的价格点弹性是不相等的,且有
Eda a点有, Eda?GBOG Edf?GC在 f点有, OG Q 在 e点有, Ede?GDOG 在以上三式中, 由于GB Eda 2 假定某消费者关于某种商品的消费数量Q与收入M之间的函数关系为M=100Q。求:当收入M=6400时的 需求的收入点弹性。 解:由以知条件M=100 Q可得Q= 2 M100 1?100 dQdM于是,有: ??1?21M100?dQM1???dMQ2进一步,可得: Em= 1M100?1M2M1?100?()/?100Q1002 2 观察并分析以上计算过程即其结果,可以发现,当收入函数M=aQ (其中a>0为常数)时,则无论收入M为多 少,相应的需求的点弹性恒等于1/2. 假定需求函数为Q=MP,其中M表示收入,P表示商品价格,N(N>0)为常数。求:需求的价格点弹性 和需求的收入点弹性。 解 由以知条件Q=MP可得: -N -N Eda dQPPMNP-NMNP?N-N-1?????(-MNP)????NdPQQQMP?N Em= dQMM??P-N??1?NdQMP M -N , 由此可见,一般地,对于幂指数需求函数Q(P)= MP而言其需求的价格价格点弹性总等于幂指数的绝对值N. 而对于线性需求函数Q(P)= MP而言,其需求的收入点弹性总是等于1. -N 假定某商品市场上有100个消费者,其中,60个消费者购买该市场1/3的商品,且每个消费者的需求的 价格弹性均为3:另外40个消费者购买该市场2/3的商品,且每个消费者的需求的价格弹性均为6。求:按100个消费者合计的需求的价格弹性系数是多少? 解: 另在该市场上被100个消费者购得的该商品总量为Q,相应的市场价格为P。根据题意,该市场的1/3 的商品被60个消费者购买,且每个消费者的需求的价格弹性都是3,于是,单个消费者i的需求的价格弹性可以写为; Edi??dQidP?P?3Qi 百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库西方经济学(微观部分)第五版课后答案,高鸿业主编在线全文阅读。
相关推荐: