2016年普通高等学校招生全统一考试
理科数学
第Ⅰ卷
一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2(1) 设集合A?xx?4x?3?0,B?x2x?3?0,则A?B?
????(A)(?3,?3333) (B)(?3,) (C)(1,) (D)(?,3)
2222(2) 设(1?i)x?1?yi,其中x,y是实数,则x?yi?
(A)1 (B)2 (C)3 (D)2
(3) 已知等差数列?an?前9项的和为27,a10?8,则a100?
(A)100 (B)99 (C)98 (D)97
(4) 某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站
的时刻是随机的,则他等车时间不超过10分钟的概率是 (A) (B)
13123 (C) (D) 234x2y2?2?1表示双曲线,且该双曲线两焦点间的距离为4,则m的取值范围是 (5) 已知方程2m?n3m?n(A)(?1,3) (B)(?1,3) (C)(0,3) (D)(0,3)
(6) 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半
径.若该几何体的体积是
28?,则它的表面积是 3(A)17π (B)18π (C)20π (D)28π
2?的图象大致为 (7) 函数y?2x?e在??2,2xy1-2O2x-21Oy12x-2Oy12x-2Oy2x
(A) (B) (C) (D)
理科数学试卷 A型 第1页(共5页)
(8) 若a?b?1,0?c?1,则
(A)ac?bc (B)abc?bac (C)alogbc?blogac (D)logac?logbc
(9) 执行右图的程序框图,如果输入的x?0,y?1,n?1,则输
出x,y的值满足
(A)y?2x (B)y?3x (C)y?4x (D)y?5x 否 开始 输入x,y,n n?n?1x?x?n?1,y?ny2x2?y2?36是 输出x,y (10) 以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知
AB?42,DE?25,则C的焦点到准线的距离为 结束 (A)2 (B)4 (C)6 (D)8
(11) 平面?过正方体ABCD?A1B1C1D1的顶点A,?∥平面CB1D1,?∩平面ABCD?m,?∩平
面ABB1A1?n,则m,n所成角的正弦值为
(A)
1323 (B) (C) (D)
3232(12) 已知函数f(x)?sin(?x??)(??0,?????),x??为f(x)的零点,x?为y?f(x)图象244的对称轴,且f(x)在(?5?,)单调,则?的最大值为 1836(A)11 (B)9 (C)7 (D)5
第Ⅱ卷
本卷包括必考题和选考题两部分。第(13)~(21)题为必考题,每个试题都必须作答。第(22)~(24)题为选考题,考生根据要求作答。
二、填空题:本题共4小题,每小题5分。 (13) 设向量a?(m,1),b?(1,2),且a?b(14) (2x?2?a?b,则m? .
22(用数字填写答案) x)5的展开式中,x3的系数是 .
(15) 设等比数列?an?满足a1?a3?10,a2?a4?5,则a1a2?an的最大值为 . (16) 某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件A需要甲材料1.5kg,乙材料
1kg,用5个工时;生产一件B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件A产品的利
理科数学试卷 A型 第2页(共5页)
润为2100元,生产一件B产品的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600工时的条件下,生产产品A、产品B的利润之和的最大值为 .
三、解答题:解答应写出文字说明、证明过程或演算步骤。 (17) (本小题满分12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB?bcosA)?c.
(Ⅰ)求C; (Ⅱ)若c?
(18) (本小题满分12分)
7,△ABC的面积为
33.求△ABC的周长. 2?AFD?90?,如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF?2FD,
且二面角D?AF?E与二面角C?BE?F都是60°. (Ⅰ)证明:平面ABEF⊥平面EFDC; (Ⅱ)求二面角E?BC?A的余弦值.
(19) (本小题满分12分)
某公司计划购买2台机器,该种机器使用三年后被淘汰.机器有一易损零件,在购买机器时,可以额外购买这种零件为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种三年使用期内更换的易损零件,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的频率,记X表示2台机器三年内
O频数CDEAFB4020891011更换的易损零件数共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数. (Ⅰ)求X的分布列;
?0.5,确定n的最小值; (Ⅱ)若要求P(X?n)(Ⅲ)以购买易损零件所需要的期望值为决策依据,在n?19与n?20之中选其一,应选用哪个?
理科数学试卷 A型 第3页(共5页)
(20) (本小题满分12分)
设圆x2?y2?2x?15?0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(Ⅰ)证明EA?EB为定值,并写出点E的轨迹方程;
(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
(21) (本小题满分12分)
已知函数f(x)?(x?2)ex?a(x?1)2有两个零点. (Ⅰ)求a的取值范围;
(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1?x2?2.
请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题计分。 (22) (本小题满分10分)选修4-1:几何证明选讲
如图,△OAB是等腰三角形,?AOB?120?.以O为圆心,(Ⅰ)证明:直线AB与⊙O相切;
(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:
1OA为半径作圆. 2DOACAB∥CD.
(23) (本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C1的参数方程为?B?x?acost,(t为参数,a?0).在以坐标原点
?y?1?asint,为极点,x轴正半轴为极轴的极坐标系中,曲线C2:??4cos?.
理科数学试卷 A型 第4页(共5页)
(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为???0,其中?0满足tan?0?2,若曲线C1与C2的公共点都在
C3上,求a.
(24) (本小题满分10分)选修4-5:不等式选讲
已知函数f(x)?x?1?2x?3.
(Ⅰ)在答题卡第(24)题图中画出y?f(x)的图像; (Ⅱ)求不等式f(x)?1的解集.
y1o1x理科数学试卷 A型 第5页(共5页)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2016年高考理科数学全国1卷-含答案在线全文阅读。
相关推荐: