22. 方差分析
一、方差分析原理
1. 方差分析概述
方差分析可用来研究多个分组的均值有无差异,其中分组是按影响因素的不同水平值组合进行划分的。
方差分析是对总变异进行分析。看总变异是由哪些部分组成的,这些部分间的关系如何。
方差分析,是用来检验两个或两个以上均值间差别显著性(影响观察结果的因素:原因变量(列变量)的个数大于2,或分组变量(行变量)的个数大于1)。一元时常用F检验(也称一元方差分析),多元时用多元方差分析(最常用Wilks’∧检验)。
方差分析可用于:
(1)完全随机设计(单因素)、随机区组设计(双因素)、析因设计、拉丁方设计和正交设计等资料;
(2)可对两因素间交互作用差异进行显著性检验; (3)进行方差齐性检验。
要比较几组均值时,理论上抽得的几个样本,都假定来自正态总体,且有一个相同的方差,仅仅均值可以不相同。还需假定每一个观察值都由若干部分累加而成,也即总的效果可分成若干部分,而每一部分都有一个特定的含义,称之谓效应的可加性。所谓的方差是离均差平方和除以自由度,在方差分析中常简称为均方(Mean Square)。
2. 基本思想
基本思想是,将所有测量值上的总变异按照其变异的来源分解为多个部份,然后进行比较,评价由某种因素所引起的变异是否具有统计学意义。
根据效应的可加性,将总的离均差平方和分解成若干部分,每一部分都与某一种效应相对应,总自由度也被分成相应的各个部分,各部分的离均差平方除以各自的自由度得出各部分的均方,然后列出方差分析表算出F检验值,作出统计推断。
方差分析的关键是总离均差平方和的分解,分解越细致,各部分的含义就越明确,对各种效应的作用就越了解,统计推断就越准确。
效应项与试验设计或统计分析的目的有关,一般有:主效应(包括各种因素),交互影响项(因素间的多级交互影响),协变量(来自回归的变异项),等等。
当分析和确定了各个效应项S后,根据原始观察资料可计算出各个离均差平方和SS,再根据相应的自由度df,由公式MS=SS/df,求出均方MS,最后由相应的均方,求出各个变异项的F值,F值实际上是两个均方之比值,通常情况下,分母的均方是误差项的均方。
根据F值的分子、分母均方的自由度f1和f2,在确定显著性水平为α情况下,由F(f1, f2)临界值表查得单侧Fα界限值。当F
3.方差分析的实验设计
为了确定方差分析表中各个有关效应项,需要在试验设计阶段就作出安排,再根据设计要求进行试验,得出原始观察值,按原来设计方案算出方差分析表中的各项。
在试验设计阶段通常需要考虑如下4个方面: (1)研究的因变量
即试验所要观察的主要指标,一次试验时可以有多个观察指标,方差分析时也可以同时对多个因变量进行分析;
(2)因素和水平
试验的因素(factor)可以是品种、人员、方法、时间、地区等等,因素所处的状态叫水平(level)。在每一个因素下面可以分成若干水平。
(3)因素间的交互影响
多因素的试验设计,有时需要分析因素间的交互影响(interaction),2个因素间的交互影响称为一级交互影响(A×B);3个因素间的交互影响称为二级交互影响(A×B×C)。
当交互影响项呈现统计不显著时,表明各个因素独立,当呈现统计显著时,就需要列出这个交互影响项的效应,以助于作出正确的统
计推断。
举例解释上述概念:要考察焦虑症的治疗疗效,一个因素是治疗方案,有2种治疗方案,即该因素有2个水平;(治疗方案称为组间因子,因为每个患者只能被分配到一个组别中,没有患者同时接受两种治疗);再考虑一个因素治疗时间,也有两个水平:治疗5周和治疗6个月,同一患者在5周和6个月不止一次地被测量(两次),称为重复测量(治疗时间称为组内因子,因为每个患者在所有水平下都进行了测量)。
建立方差分析模型时,既要考虑两个因素治疗方案和治疗时间(主效应),又要考虑治疗方案和时间的交互影响(交互效应),此时即两因素混合模型方差分析。
当某个因素的各个水平下的因变量的均值呈现统计显著性差异时,必要时可作两两水平间的比较,称为均值间的两两比较。 二、R语言实现
方差分析对数据的要求:满足正态性(来自同一正态总体)和方差齐性(各组方差相等),在这两个条件下,若各组有差异,则只可能是来自影响因素的不同水平。
用aov()函数进行方差分析,基本格式为:
aov(formula, data=NULL, projections=FALSE, qr=TRUE,
contrasts=NULL, ...)
其中,formula为方差分析公式;
data为数据框;
projection设置是否返回预测结果;
qr设置是否返回QR分解结果; contrasts为公式中一些因子的列表。
formula公式的表示:(y为因变量,ABC为分组因子) 符号 ~ eg:y~A+B+C 用法 分隔符号,左边为响应变量,右边为解释变量 + 分隔解释变量 : * ^ .
常见研究设计的表达式:(小写字母表示定量变量,大写字母表 示组别因子,Subject是对被试者独有的标识变量)
设计 单因素ANOVA 含单个协变量的单因素ANCOVA 双因素ANOVA 含两个协变量的双因素ANCOVA 随机化区组 单因素组内ANOVA 含单个组内因子(W)和单个组间因子(B)的重复测量ANOVA 表达式 y~A y~x+A y~A*B y~x1+x2+A*B y~B+A, B为区组因子 y~A+Error(Subject/A) y~B*W+Error(Subject/W) 表示变量的交互项 eg:y~A+B+A:B 表示所有可能交互项 eg:y~A*B*C可展开为:y~A+B+C+A:B+A:C+B:C+A:B:C 表示交互项达到次数 eg:y~(A+B+C)^2展开为:y~A+B+C+A:B+A:C+B:C 表示包含除因变量外的所有变量 eg:若一个数据框包括变量y,A、B和C,代码y~.可展开为y~A+B+C 注意:非均衡设计时或存在协变量时,效应项的顺序对结果影响较大,越基础的效应越需要放在表达式前面,首先是协变量、然后是
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库R语言学习系列27-方差分析在线全文阅读。
相关推荐: