77范文网 - 专业文章范例文档资料分享平台

2009年福建省三明市中考数学试题

来源:网络收集 时间:2018-11-15 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

2009年三明市初中毕业暨高级中等学校招生统一考试

数 学 试 题

(满分:150分 考试时间:6月21日上午8﹕30—10﹕30)

★友情提示:

1.本试卷共4页.

2.考生将自己的姓名、准考证号及所有答案均填写在答题卡上. 3.答题要求见答题卡上的“注意事项”.

4.未注明精确度、保留有效数字等的计算问题,结果应为准确数. ...

?b4ac?b2?b?x??5.抛物线y?ax?bx?c?a?0?的顶点坐标为?,对称轴. ?,?2a?2a4a??2一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) ...1.6的相反数是( )

11A. 6 B.?6 C. D.?

662.2008年末我市常住人口约为2630000人,将2630000用科学记数法表示为( ) A.263?10 B.2.63?10 C.2.63?10 D.0.263?10 3.下列计算正确的是 ( )

A. a?a?2a B. (2a)2?4a2 C.3?3??3 D.4??2 4.在下面的四个几何体中,它们各自的主视图与左视图可能不相同的是( )

A. B. C. D. 5.下列事件是必然事件的是( )

A.打开电视机,正在播电视剧 B.小明坚持体育锻炼,今后会成为奥运冠军 C.买一张电影票,座位号正好是偶数 D.13个同学中,至少有2人出生的月份相同

6.九年级(1)班10名同学在某次“1分钟仰卧起坐”的测试中,成绩如下(单位:次):39,45,40,44,37,39,46,40,41,39,这组数据的众数、中位数分别是( ) A.39,40 B.39,38 C.40,38 D.40,39

7.如图, △ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移得到△DCE,连接AD、BD,下列结论错误的是( ) ..A.AD//BC B.AC⊥BD

C.四边形ABCD 面积为43 D.四边形ABED是等腰梯形 8.点P (2,1)关于直线y=x对称的点的坐标是( )

A.(?2,1) B.(2,?1) C.(?2,?1) D.(1,9.如图,已知圆锥的高为4,底面圆的直径为6,则此圆锥的侧面积

2240?144672)

1

是( )

A.12π B.15π C.24π D.30π

k10.如图,直线l和双曲线y?(k?0)交于A、B两点,P是线

x段AB上的点(不与A、B重合),过点A、B、P分别向x轴 作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC 的面积为S1、△BOD的面积为S2、△POE的面积为S3, 则有( )

A.S1?S2?S3 B.S1?S2?S3 C. S1?S2?S3 D.S1?S2?S3

二、填空题(共6小题,每小题4分,满分24分.请将答案填入答题卡的相应位置) ...11.化简:12?3= .

12. 分解因式:ax?4ax?4a= .

13. 已知一个多边形的内角和等于900,则这个多边形的边数是 . 14. 如图,△ABC 内接于⊙O,∠C=30,AB=5,则⊙O的直径为 .

15.袋中装有2个红球和2个白球,它们除了颜色外都相同.随机从中

摸出一球,记下颜色后放回袋中,再随机摸出一球,则两次都摸到 红球的概率是 .

16.根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有 个点.

?? (1) (2) (3) (4) (5)

三、解答题(共7小题,满分86分.请将解答过程写在答题卡的相应位置.作图或添辅助线先用铅笔画完,再...用水笔描黑)

17.(每小题8分,满分16分) (1)化简:(

?2?11a?)?2; a?3a?3a?9?4x?3??x,?(2)解不等式组?x?4x?21并把解集在数轴上表示出来.

?≤,?63?2

2

18.(本题满分10分)

如图,A、B两点分别位于一个池塘的两端,由于受条件限制无法直接度量A、B间的距离.小明利用学过的知识,设计了如下三种测量方法,如图①、②、③所示(图中a,b,c...表示长度,?,?,?...表示角度).

(1)请你写出小明设计的三种测量方法中AB的长度:

图①AB= ,图②AB= ,图③AB= ;(6分)

(2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母

标注需测量的边或角,并写出AB的长度. (4分)

19.(本题满分10分)

2009年4月1日《三明日报》发布了“2008年三明市国民经济和社会发展统计公报”,根据其中农林牧渔业产值的情况,绘制了如下两幅统计图,请你结合图中所给信息解答下列问题: (1)2008年全市农林牧渔业的总产值为 亿元;(2分)

(2)扇形统计图中林业所在扇形的圆心角为 度(精确到度);(2分) (3)补全条形统计图;(2分)

(4)三明作为全国重点林区之一,市政府大力发展林业产业,计划2010年林业产值达60.5亿元,求今明两

年林业产值的年平均增长率. (4分)

(第18题备用图)

3

20. (本题满分12分)

如图,在直角梯形ABCD中,AB∥CD,?B?90?,AB=AD,∠BAD的平分线交BC于E,连接DE. (1)说明点D在△ABE的外接圆上;(6分)

(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.(6分)

21.(本题满分12分)

为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x万美元的特别关税.在不考虑其它因素的情况下: ...

(1)分别写出该企业两个投资方案的年利润y1、y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;(4分)

(2)分别求出这两个投资方案的最大年利润;(4分)

(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?(4分)

4

2

22.(本题满分12分)

已知:矩形ABCD中AD>AB,O是对角线的交点,过O任作一直线分别交BC、AD于点M、N(如图①). (1)求证:BM=DN;

(2)如图②,四边形AMNE是由四边形CMND沿MN翻折得到的,连接CN,求证:四边形AMCN是菱形; (3)在(2)的条件下,若△CDN的面积与△CMN的面积比为1︰3,求

23.(本题满分14分)

如图,在平面直角坐标系xOy中,抛物线y??MN的值. DN12x?bx?c与x轴交于A(1,0)、 2B(5,0)两点.

(1)求抛物线的解析式和顶点C的坐标;(4分)

(2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分

别交于点P、Q,设旋转角为?(0???≤90?). ①当?等于多少度时,△CPQ是等腰三角形?(5分)

②设BP?t,AQ?s,求s与t之间的函数关系式.(5分)

5

2009年三明市初中毕业暨高级中等学校招生统一考试

数学试卷参考答案及评分标准

说明:以下各题除本卷提供的解法外,其他解法本标准不一一例举,评卷时可参考评分标准,按相应给分段评分.用

计算器计算的部分,列式后可直接得到结果.

一、选择题(每小题4分,共40分)

1. B 2. C 3. B 4.A 5.D 6.A 7.C 8.D 9.B 10.C 二、填空题(每小题4分,共24分) 11.

23 12. a(x?2) 13. 7 14. 10 15.

12 16. n?n?1 4三、解答题(共86分) 17.(1)解法一:原式=

=

=

(a?3)?(a?3)a?2 ································································ 3分

(a?3)(a?3)a?92a(a?3)(a?3) ······························································· 5分 ?(a?3)(a?3)a2a ·························································································· 7分 a6

=2 ································································································ 8分

解法二:原式=(11a2a?3?a?3)??9a ····························································· 2分 =1(a?3)(a?3)a?3?a+1(a?3)(a?3)a?3?a ·········································· 4分 =a?3a?3a?a ··················································································· 6分 =

2aa ···························································································· 7分 =2 ································································································ 8分

(2)解:解不等式①,得 x??3, ·········································································· 3分 解不等式②,得 x≤3, ············································································ 6分 不等式①、②的解集在数轴上表示如下:

············································· 7分 ∴不等式组的解集为?3?x≤3. ·································································· 8分

7

18.解:(1)①a?tan? ② 2c ③ b (每空2分)

(2)示意图正确2分,AB表示正确2分.(注:本题方法多种,下面列出3种供参考)

方法1: AB=a2?b2 AB=c2?a2

方法2: 方法3:

AB=c AB=

ac b

19.解:(1) 221 (2) 81 (每空2分) (3)补全条形统计图正确(2分)

(4)设今明两年林业产值的年平均增长率为x. 根据题意,得

50(1?x)2?60.5 ····························································································· 2分

解得:x1?0.1=10% ,x2??2.1(不合题意,舍去) ······························ 3分 答:今明两年林业产值的年平均增长率为10%. ······································· 4分

8

20.(1)证法一:∵∠B=90°,∴ AE是△ABE外接圆的直径. ··· …1分 D取AE的中点O,则O为圆心,连接OB、OD. ··············· 2分

C∵AB=AD,∠BAO=∠DAO,AO=AO,

E∴△AOB≌△AOD. ··············································· 4分

O∴OD=OB. ··········································································· 5分 AB∴点D在△ABE的外接圆上. ············································ 6分 证法二:∵∠B=90°,∴AE是△ABE外接圆的直径. ······································· 1分 ∵AB=AD,∠BAE=∠DAE,AE=AE, ∴△ABE≌△ADE. ·············································································· 3分 ∴∠ADE=∠B=90°. ················································································ 4分

取AE的中点O, 则O为圆心,连接OD,则OD=12AE.

∴点D在△ABE的外接圆上. ·································································· 6分 (2)证法一:直线CD与△ABE的外接圆相切. ························································· 7分

理由:∵AB∥CD, ∠B=90°. ∴∠C=90°. ····················································· 8分 ∴∠CED+∠CDE=90°. ········································································· 9分 又∵OE=OD, ∴∠ODE=∠OED. ································································· 10分 又∠AED=∠CED, ∴∠ODE=∠DEC.

∴?ODC?∠CDE+∠ODE=∠CDE+∠CED=90°. ················································ 11分 ∴CD与△ABE的外接圆相切. ··························································· 12分 证法二: 直线CD与△ABE的外接圆相切. ························································ 7分 理由:∵AB∥CD, ∠B=90°. ∴∠C=90°. ·························································· 8分 又∵OE=OD, ∴∠ODE=∠OED. ···················································· 9分 又∠AED=∠CED,∴∠ODE=∠DEC. ······················································· 10分 ∴OD∥BC.

∴?ODC?90?. ··············································································· 11分 ∴CD与△ABE的外接圆相切. ······································································ 12分 21.解:(1)y1?(10?a)x (1≤x≤200,x为正整数) ··································· 2分

y2?10x?0.05x2 (1≤x≤120,x为正整数) ·················································· 4分

(2)①∵3<a<8, ∴10-a>0,即y1随x的增大而增大 , ·································· 5分

∴当x=200时,y1最大值=(10-a)×200=2000-200a(万美元) ··················· 6分

②y22??0.05(x?100)?500 ·································································· 7分

∵-0.05<0, ∴x=100时, y2最大值=500(万美元) ·································· 8分

(3)由2000-200a>500,得a<7.5, ∴当3<a<7.5时,选择方案一; ······································································· 9分 由2000?200a?500,得 a?7.5,

∴当a=7.5时,选择方案一或方案二均可; ························································ 10分 由2000?200a?500,得 a?7.5, ∴当7.5<a<8时,选择方案二. ···································································· 12分

22.(1)证法一:连接BD,则BD过点O.

9

∵AD∥BC, ∴∠OBM=∠ODN. ···················· 1分 又OB=OD, ∠BOM=∠DON, ······················ 2分 ∴△OBM≌△ODN. ····························· 3分 ∴BM=DN. ···························· 4分 证法二:∵矩形ABCD是中心对称图形,点O是对称中心. ········································

∴B、D和M、N关于O点中心对称. ····························· 3分 ∴BM=DN. ····································································· 4分 (2)证法一:∵矩形ABCD,

∴AD∥BC,AD=BC. 又BM=DN, ∴AN=CM. ························ 5分

∴四边形AMCN是平行四边形. ························· 6分

由翻折得,AM=CM, ························ 7分 ∴四边形AMCN是菱形. ························· 8分 证法二:由翻折得,AN=NC,AM=MC, ∠AMN=∠CMN. ······················································· 5分 ∵AD∥BC, ∴∠ANM=∠CMN.

∴∠AMN=∠ANM. ∴AM=AN. ·································································· 6分 ∴AM=MC=CN=NA. ··············································································· 7分 ∴四边形AMCN是菱形. ·········································································· 8分 (3)解法一:∵S1?CDN?2DN?CD,S1?CMN?2CM?CD,

又S?CDN:S?CMN=1︰3,

∴DN︰CM=1︰3 ············································· 9分 设DN=k,则CN=CM=3k. 过N作NG⊥MC于点G,

则CG=DN=k,MG=CM-CG=2k. ························ 10分 NG=CN2?CG2?9k2?k2?22k

∴MN=MG2?NG2?4k2?8k2?23k ································································ 11分 ∴

DNMN?k23k?36. ··························································· 12分 解法二:∵S12?CD,S1?CDN?DN?CMN?2CM?CD,

又S?CDN:S?CMN=1︰3, ∴DN︰CM=1︰3 ················································· 9分

连接AC,则AC过点O,且AC⊥MN. 设DN=k,则CN=AN=CM=3k,AD=4 k.

CD=NC2?DN2?9k2?k2?22k ···················································· 10分 OC=12AC?12AD2?CD2?1216k2?8k2?6k

∴MN=2ON?2CN2?OC2?29k2?6k2?23k ··················································· 11分 ∴

DNMN?k23k?36. ···························································································· 12分 10

??1?b?c?.解:(1)根据题意,得 ???20, ······························································ 1分

????252?5b?c?0.? 解得?b?3,?5 ·········································· 2分 ??c?? ·

2.∴y??12x2?3x?52 ······················································ 3分 =?12(x?3)2?2

∴顶点C的坐标为(3,2). ············································································· 4分 (2)①∵CD=DB=AD=2,CD⊥AB, ∴∠DCB=∠CBD=45°. ············································· 5分

ⅰ)若CQ=CP,则∠PCD=

12∠PCQ=22.5°. ∴当?=22.5°时,△CPQ是等腰三角形. ·············· 6分 ⅱ)若CQ=PQ,则∠CPQ=∠PCQ=45°, 此时点Q与D重合,点P与A重合. ∴当?=45°时,

△CPQ是等腰三角形. ············································ 7分 ⅲ)若PC=PQ, ∠PCQ=∠PQC=45°,此时点Q与B重合,点P与D重合.

∴?=0°,不合题意. ··········································· 8分 ∴当?=22.5°或45°时,△CPQ是等腰三角形. ················································ 9分 ②连接AC,∵AD=CD=2,CD⊥AB,

∴∠ACD=∠CAD=45?, AC= BC=22?22?22 ················································ 10分 ⅰ)当0???≤45?时,

∵∠ACQ=∠ACP+∠PCQ=∠ACP+45°. ∠BPC=∠ACP+∠CAD=∠ACP+45°.

∴∠ACQ=∠BPC. ···························································· 11分 又∵∠CAQ=∠PBC=45°, ∴△ACQ∽△BPC. ∴AQACBC?BP. ∴AQ·BP=AC·BC=22×22=8 ·············································································· 12分

ⅱ)当45????90?时,同理可得AQ·BP=AC·BC=8 ∴s?8t. 14分

23

11

??1?b?c?.解:(1)根据题意,得 ???20, ······························································ 1分

????252?5b?c?0.? 解得?b?3,?5 ·········································· 2分 ??c?? ·

2.∴y??12x2?3x?52 ······················································ 3分 =?12(x?3)2?2

∴顶点C的坐标为(3,2). ············································································· 4分 (2)①∵CD=DB=AD=2,CD⊥AB, ∴∠DCB=∠CBD=45°. ············································· 5分

ⅰ)若CQ=CP,则∠PCD=

12∠PCQ=22.5°. ∴当?=22.5°时,△CPQ是等腰三角形. ·············· 6分 ⅱ)若CQ=PQ,则∠CPQ=∠PCQ=45°, 此时点Q与D重合,点P与A重合. ∴当?=45°时,

△CPQ是等腰三角形. ············································ 7分 ⅲ)若PC=PQ, ∠PCQ=∠PQC=45°,此时点Q与B重合,点P与D重合.

∴?=0°,不合题意. ··········································· 8分 ∴当?=22.5°或45°时,△CPQ是等腰三角形. ················································ 9分 ②连接AC,∵AD=CD=2,CD⊥AB,

∴∠ACD=∠CAD=45?, AC= BC=22?22?22 ················································ 10分 ⅰ)当0???≤45?时,

∵∠ACQ=∠ACP+∠PCQ=∠ACP+45°. ∠BPC=∠ACP+∠CAD=∠ACP+45°.

∴∠ACQ=∠BPC. ···························································· 11分 又∵∠CAQ=∠PBC=45°, ∴△ACQ∽△BPC. ∴AQACBC?BP. ∴AQ·BP=AC·BC=22×22=8 ·············································································· 12分

ⅱ)当45????90?时,同理可得AQ·BP=AC·BC=8 ∴s?8t. 14分

23

11

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2009年福建省三明市中考数学试题在线全文阅读。

2009年福建省三明市中考数学试题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/276738.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: