数形结合思想
[思想方法解读] 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:①借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;②借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.
数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻画与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决.数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.
数学中的知识,有的本身就可以看作是数形的结合.如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的.
常考题型精析
题型一 数形结合在方程根的个数中的应用 x
例1 方程sin πx=的解的个数是( )
4A.5 C.7 答案 C
x
解析 在同一平面直角坐标系中画出y1=sin πx和y2=的图象,如下图:
4
B.6 D.8
x
观察图象可知y1=sin πx和y2=的图象在第一象限有3个交点,根据对称性可知,在第三
4x
象限也有3个交点,在加上原点,共7个交点,所以方程sin πx=有7个解.
4点评 利用数形结合求方程解应注意两点
(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但
用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.
(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.
x??x-1-kx2,x≤0,
变式训练1 若函数f(x)=?有且只有两个不同的零点,则实数k的取
??ln x,x>0值范围是( ) A.(-4,0) C.(-4,0] 答案 B
解析 当x>0时,f(x)=ln x与x轴有一个交点, 即f(x)有一个零点.
xx
依题意,显然当x≤0时,f(x)=-kx2也有一个零点,即方程-kx2=0只能有一个
x-1x-1解.
x
令h(x)=,g(x)=kx2,则两函数图象在x≤0时只能有一个交点.
x-1
B.(-∞,0] D.(-∞,0)
x
若k>0,显然函数h(x)=与g(x)=kx2在x≤0时有两个交点,即点A与原点O(如图所示).
x-1显然k>0不符合题意.
x
若k<0,显然函数h(x)=与g(x)=kx2在x≤0时只有一个交点,即原点O(如图所示).
x-1
x
若k=0,显然函数h(x)=与g(x)=kx2在x≤0时只有一个交点,即原点O.
x-1综上,所求实数k的取值范围是(-∞,0].故选B. 题型二 利用数形结合解决不等式参数问题
4
例2 设函数f(x)=a+-x2-4x和g(x)=x+1,已知x∈[-4,0]时,恒有f(x)≤g(x),求实
3数a的取值范围.
4
解 ∵f(x)≤g(x),即a+-x2-4x≤x+1,
34
变形得-x2-4x≤x+1-a,
3令y1=-x2-4x,① 4
y2=x+1-a.②
3
①变形得(x+2)2+y2=4(y≥0),
即表示以(-2,0)为圆心,2为半径的圆的上半圆; 4
②表示斜率为,纵截距为1-a的平行直线系.
34
设与圆相切的直线为AT,其方程为y=x+b (b>0),
3|-8+3b|
则圆心(-2,0)到AT的距离为d=,
5|-8+3b|2由=2,得b=6或-(舍去).
53∴当1-a≥6,即a≤-5时,f(x)≤g(x). 点评 利用数形结合解不等式或求参数的方法
求参数范围或解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决问题,往往可以避免烦琐的运算,获得简捷的解答.
变式训练2 若存在正数x使2x(x-a)<1成立,则a的取值范围是( ) A.(-∞,+∞) C.(0,+∞) 答案 D
1-
解析 因为2x>0,所以由2x(x-a)<1得x-a 2-a,g(x)=2x的图象,如图. - B.(-2,+∞) D.(-1,+∞) 当x>0时,g(x)=2x<1,所以如果存在x>0,使2x(x-a)<1,则有f(0)<1,即-a<1,即a> - -1,所以选D. 题型三 利用数形结合求最值 例3 (2014·北京)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为( ) A.7 B.6 C.5 D.4 答案 B 解析 根据题意,画出示意图,如图所示, 则圆心C的坐标为(3,4),半径r=1,且|AB|=2m. 1因为∠APB=90°,连接OP,易知|OP|=|AB|=m. 2要求m的最大值, 即求圆C上的点P到原点O的最大距离. 因为|OC|=32+42=5,所以|OP|max=|OC|+r=6, 即m的最大值为6. 点评 利用数形结合求最值的方法步骤 第一步:分析数理特征,确定目标问题的几何意义.一般从图形结构、图形的几何意义分析代数式是否具有几何意义. 第二步:转化为几何问题. 第三步:解决几何问题. 第四步:回归代数问题. 第五步:回顾反思.应用几何意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:(1)比值——可考虑直线的斜率;(2)二元一次式——可考虑直线的截距;(3)根式分式——可考虑点到直线的距离;(4)根式——可考虑两点间的距离. 变式训练3 已知P是直线l:3x+4y+8=0上的动点,PA、PB是圆x2+y2-2x-2y+1=0的两条切线,A、B是切点,C是圆心,求四边形PACB面积的最小值. 解 从运动的观点看问题,当动点P沿直线3x+4y+8=0向左上方或右下方无穷远处运动 11 时,直角三角形PAC的面积SRt△PAC=|PA|·|AC|=|PA|越来越大,从而S四边形PACB也越来越大; 22当点P从左上、右下两个方向向中间运动时,S四边形PACB变小,显然,当点P到达一个最特殊的位置,即CP垂直直线l时,S四边形PACB应有唯一的最小值,此时|PC|=3, 从而|PA|=|PC|2-|AC|2=22. 1 所以(S四边形PACB)min =2××|PA|×|AC|=22. 2 |3×1+4×1+8| = 32+42高考题型精练 ?x2+1,x>0,? 1.(2014·福建)已知函数f(x)=?则下列结论正确的是( ) ?cos x,x≤0,? A.f(x)是偶函数 C.f(x)是周期函数 答案 D B.f(x)是增函数 D.f(x)的值域为[-1,+∞) 2 ??x+1,x>0, 解析 函数f(x)=?的图象如图所示,由图象知只有D正确. ?cos x,x≤0? 2.若方程x+k=1-x2有且只有一个解,则k的取值范围是( ) A.[-1,1) C.[-1,1] 答案 D 解析 令y1=x+k,y2=1-x2, 则x2+y2=1(y≥0). 作出图象如图: B.k=±2 D.k=2或k∈[-1,1) 而y1=x+k中,k是直线的纵截距,由图知:方程有一个解?直线与上述半圆只有一个公共点?k=2或-1≤k<1. 百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库高考复习 数形结合思想考题精炼在线全文阅读。
相关推荐: